MS\&E 125: Intro to Applied Statistics

Data Munging

Professor Udell
Management Science and Engineering Stanford

April 17, 2023

Announcements

- hw 1 due Friday
- quiz 1 Friday
- convert colab to pdf
- complete participation before subsequent class
- section today

Outline

Messy data

Data types

- continuous values (e.g., 4.2, π)
- discrete values (e.g., 0, 4, 994)
- nominal values (e.g., apple, banana, pear)
- ordinal values (e.g., rarely, sometimes, often)
- graphs or networks (e.g., person 1 is friends with person 2)
- text (e.g., doctor's note describing symptoms)
- sets (e.g., items purchased)

Messy data

- heterogeneous: values of many different types
- missing: some values are missing, inconsistent, not recorded, or lost
- noise: some (or all) values suffer errors, inaccuracies, or malicious corruption
- duplicated values

Data cleaning

- remove duplicates
- remove missing values
- remove noise
- convert to a single type (usually, numeric)
how? by taking a careful look...

Demo

https://colab.research.google.com/github/ stanford-mse-125/demos/blob/main/fires.ipynb

Outline

Messy data

SQL

SQL

- most data is stored in relational databases
- Structured Query Language (SQL) is a language for querying relational databases
- we will use pandas in python, not SQL
- but if you know the ideas, you can easily write SQL queries

SQL: example

team_name	player_name	player_height
Los Angeles Lakers	LeBron James	$6^{\prime} 9^{\prime \prime}$
Boston Celtics	Jaylen Brown	$6^{\prime} 6^{\prime \prime}$
Chicago Bulls	Zach LaVine	$6^{\prime} 7^{\prime \prime}$
Miami Heat	Jimmy Butler	$6^{\prime} 6^{\prime \prime}$
San Antonio Spurs	DeMar DeRozan	$6^{\prime} 6^{\prime \prime}$
Golden State Warriors	Stephen Curry	$6^{\prime} 3^{\prime \prime}$
Houston Rockets	Christian Wood	$6^{\prime} 10^{\prime \prime}$
Dallas Mavericks	Luka Doncic	$6^{\prime} 7 \prime$

"ChatGPT, write an sql query to find the NBA team with the highest average height."

SQL: example

team_name	player_name	player_height
Los Angeles Lakers	LeBron James	$6^{\prime} 9^{\prime \prime}$
Boston Celtics	Jaylen Brown	$6^{\prime} 6^{\prime \prime}$
Chicago Bulls	Zach LaVine	$6^{\prime \prime} 7^{\prime \prime}$
Miami Heat	Jimmy Butler	$6^{\prime \prime} 6^{\prime \prime}$
San Antonio Spurs	DeMar DeRozan	$6^{\prime} 6^{\prime \prime}$
Golden State Warriors	Stephen Curry	$6^{\prime} 3^{\prime \prime}$
Houston Rockets	Christian Wood	$6^{\prime} 10^{\prime \prime}$
Dallas Mavericks	Luka Doncic	$6^{\prime \prime} 7^{\prime \prime}$

"ChatGPT, write an sql query to find the NBA team with the highest average height."

SELECT team_name, AVG(player_height) AS avg_height FROM nba_teams
GROUP BY team_name
ORDER BY avg_height DESC
LIMIT 1;

SQL poll

match the query to the question:
A. What is the average sales per month for each product line?
B. Which product line has the highest sales?
C. Which country is most profitable?

1. SELECT product_line, SUM(sales) AS total_sales FROM orders
GROUP BY product_line ORDER BY total_sales DESC LIMIT 1 ;
2. SELECT country, SUM(sales) AS total_profit

FROM orders
GROUP BY country
ORDER BY total_profit DESC
LIMIT 1;
3. SELECT product_line, AVG(sales) AS avg_monthly_sales FROM orders
GROUP BY product_line, YEAR(orderdate), MONTH(orderdate)
ORDER BY product_line;

SQL-style munging

- select rows
- select columns
- on condition
- sort
\rightarrow group (aggregate using a function)
- join (combine tables)

Demo

https://colab.research.google.com/github/ stanford-mse-125/demos/blob/main/join.ipynb

