Lecture 11.
Logistic regression

Madeleine Udell and Josh Grossman
Stanford University

Linear regression

Real-valued outcomes modeled as a linear combination of
covariates.

vi =1z + -+ BpTipt+ € €~ N(O,az)

0-1 outcomes

What if outcomes are binary?

Y; € {rain, no rain}
Y; € {democrat, republican}
Y; € {spam, not spam}

Linear Probability Model

1.51

1.0

0.5

0.0

15

Linear regression
for binary outcomes

You can do it, but the prediction is not guaranteed to be in the
interval [0,1]. [Linear probability model. |

Yi = B1zin + -+ BpTip

print (spam.columns)

Index(['make', 'address', 'all', 'num3d', 'our', 'over', 'remove', 'internet',
'order', 'mail', 'receive', 'will', 'people', 'report', 'addresses',
'free', 'business', 'email', 'you', 'credit', 'your', 'font', 'num000',
'money', 'hp', 'hpl', 'george', 'num650', 'lab', 'labs', 'telnet',
'num857', 'data', 'num4l1l5', 'num85', 'technology', 'numl999', 'parts',
'pm', 'direct', 'cs', 'meeting', 'original', 'project', 're', 'edu',
'table', 'conference', 'char semicolon', 'char left paren',

'char left bracket', 'char exclamation', 'char dollar', 'char pound',
'capital avg', 'capital long', 'capital total', 'is spam'],
dtype='object')

1: email is spam
0: email is not spam
spam['is _spam'].value counts()

0 2788
1 1813
Name: is spam, dtype: inté64

4000 1

3500

3000

2500

t

c

§ 2000 -
1500 -
1000 -

500 1

0% to 12.5% of the words in each of the 4601 emails is
print(spam['money'].head())
spam['money'].describe()

.00

.43

.06

.00

.00

Name: money, dtype: floaté64
count 4601.000000

= W NP O
O O O © O

mean 0.094269
std 0.442636
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000
max 12.500000

Name: money, dtype: floaté64

Hmoney n

D R N NN

Irel

1. char dollar: % of characters in the email that are 'S’
2. credit: % of words in the email that are

3. money: % of words in the email that are 'money'
4. re: % of words in the email that are

'credit'

(as in the subject line

formula = 'is spam ~ 1 + char dollar + credit + money + re'
model = smf.ols(formula=formula, data=spam).fit()

model.summary ()

Intercept
char_dollar
credit
money

re

coef
0.3346
0.5855
0.1575
0.1879
-0.0536

std err
0.007
0.027
0.013
0.015
0.006

t
45.696
21.889
12.255
12.635

-8.271

P>It|
0.000
0.000
0.000
0.000
0.000

How do you interpret the intercept?

[0.025
0.320
0.533
0.132
0.159

-0.066

0.975]
0.349
0.638
0.183
0.217

-0.041

How do you interpret the char_dollar coefficient?

[Discuss with neighbors][Poll]

're: hello')

How do you interpret the
intercept?

) 0.3346% of sampled emails are spam

B) 33.46% of sampled emails are spam

C) 33.46% of blank sampled emails are spam

D) 33.46% of sampled emails without "$", "credit",
"money", or "re" are spam

>

How do you interpret the
char_dollar coefficient?

A) 58.55% of sampled emails containing "$" are spam

B) A 1% increase in the proportion of characters in an email
that are "$" is associated with a 58.55pp increase in the
probability that the email is spam

C) One additional "$" character in a sampled email is
associated with a 58.55% increase in the probability that
the email is spam

D) A 100pp increase in the proportion of characters in an
email that are "$" is associated with a 58.55pp increase

in tl bability that tl il

1. char dollar: % of characters in the email that are 'S’

2. credit: &% of words in the email that are 'credit'’

3. money: % of words in the email that are 'money'

4. re: % of words in the email that are 're' (as in the subject line 're:
formula = 'is spam ~ 1 + char dollar + credit + money + re'

model = smf.ols(formula=formula, data=spam).fit()

model.summary ()

D R N NN

coef stderr t P>|t] [0.025 0.975]

Intercept 0.3346 0.007 45.696 0.000 0.320 0.349
char_dollar 0.5855 0.027 21.889 0.000 0.533 0.638
credit 0.1575 0.013 12.255 0.000 0.132 0.183
money 0.1879 0.015 12.635 0.000 0.159 0.217

re -0.0536 0.006 -8.271 0.000 -0.066 -0.041

If all the covariates are zero, we estimate a 33% probability that the email
is spam.

hello')

1. char dollar: % of characters in the email that are 'S’

2. credit: &% of words in the email that are 'credit'’

3. money: % of words in the email that are 'money'

4. re: % of words in the email that are 're' (as in the subject line 're: hello')
formula = 'is spam ~ 1 + char dollar + credit + money + re'

model = smf.ols(formula=formula, data=spam).fit()

model.summary ()

D R N NN

coef stderr t P>|t] [0.025 0.975]

Intercept 0.3346 0.007 45.696 0.000 0.320 0.349
char_dollar 0.5855 0.027 21.889 0.000 0.533 0.638
credit 0.1575 0.013 12.255 0.000 0.132 0.183
money 0.1879 0.015 12.635 0.000 0.159 0.217

re -0.0536 0.006 -8.271 0.000 -0.066 -0.041

For every one unitincrease in char_dollar, we estimate a 0.59 increase in
is_spam(i.e., a 59 percentage point increase in the probability that the
email is spam)

Note: a 59pp increase is different than a 59% increase!

pred = model.predict(spam) pred.describe()

pred.head()
count 4601.000000

0 0.334591 mean 0.394045
1 0.520799 std 0.206687
2 0.500795 min -0.812540
25% 0.334591
3 0.334591
4 0.334591 50% 0.334591
: 75% 0.395442
dtype: float64 nax 5. GABA0E
dtype: floaté64

Impossible predictions!

Logistic regression

Model the probability of occurrence

We seek to estimate the probability that

e itwill rainon aparticular day
e voter will vote for a Democrat
® message is spam

A fundamental problem

Probabilities fall in the range [0,1].

Linear combinations can take on any value in (-, +0).
[For example, the range of 3x,+5x, is (-0, +e0) |

How can we transform [0,1] — (-o0, +0) ?

Candidate functions

exp(x) maps [0, 1] — [1, €]
log(x) maps [0, 1] — (-, O]

X

10glt($) — lOg m maps [0,1] N (—oo, +oo)

The logit function

logit(x) = log

N
T

1l —=x

0.0 0.2

0.4

0.6

0.8

1.0

More realistic outcomes

Instead of getting impossible outcomes with this model:

Pr(Y; =1) = frzin + - + BpTip

We could more accurately model outcomes like this:

Pr YZ:
log 1—P(r(YL-i)1) = P1%q + -+ 5p$ip

Odds

log Pr(}/i . 1) "log odds" of Yi=1 occurring
1-Pr(Y; =1)

Pr(Y; =1)
1 -Pr(Y; =1)

"odds" of Yi=1 occurring

Odds

Pr(Y; = 1)

"odds" of Yi=1 occurring

1—-Pr(Y; =1)

Suppose the probability you will win a race is 60%.

Your odds of winning are 3to 2 (i.e., 1.5).

Odds

Suppose | told you that | could double your odds of winning.
Your current Pr(Win) is 0.6.

What is your new Pr(Win)?
[Discuss with neighbors]

Suppose | told you that | could double
your odds of winning.

Your current Pr(Win) is 0.6.

What is your new Pr(Win)?

A) 1.2

B)0.8

C)0.75

D) Impossible to double odds

Odds

Suppose | told you that | could double your odds of winning.
Your current Pr(Win) is 0.6.

What is your new Pr(Win)?

Old odds are 1.5 — New odds are 3 — New Pr(Win) is.75

~ Pr(Win)
- 1 — Pr(Win)

Pr(Win) = 0.75

Odds

Odds p
What if we keep doubling our odds? 1 0.5
2 0.67
P 4 0.8
odds = ——
1 . p 8 0.88
16 0.94
odds
32 0.97

%0 1 4+ odds 64 0.98

Log odds

Probabilities must be between O and 1
Odds can be any number from O to infinity

Log odds can be any number from -infty to infty

Log odds

Instead of getting impossible outcomes with this model:

Pr(Y; =1) = b1z + - + BpTip

We could more accurately model outcomes like this:

log fﬁf{gﬂ) = B1xi1 + -+ BpZip

Inverse functions

i XL
loglt (CE) — log maps [0,1] — (-0, +0)
logit™ ! (x) = 1iew maps (-, +0) —[0,1]

inverse log-odds <--> inverse logit <--> expit
def inv_logit(log_odds):
return(np.exp(log odds)/(l+np.exp(log odds)))

log_odds_range = np.linspace(-10, 10, 1000)
p_range = inv_logit(log odds_range)
plt.plot(log odds range, p range)
plt.xlabel("log(0Odds)")
plt.ylabel("Probability")

plt.show()

10 1

Probability
= =
(=] (s 4]

o
=

=t
N

0.0 1

T

-100 -75 -50 -25 00 25 50 75 10.0
log(Odds)

Logistic regression

Model the probability of occurrence

Pr(Y; =1) = logit ™" (B1zi1 + - - - + BpLip)
em

1+ e”*

logit(m)—log(.)

logit™ ! (z) =

l—=x

Maximum likelihood estimation

Logistic regression

pi(B) = logit ™ (X;)

Very similar to Bernoulli MLE!

formula = 'is_spam ~ 1 + char_dollar + credit + money + re'
model = smf.logit(formula=formula, data=spam).fit()
model.summary ()

is_spam ~ 1 + char dollar + credit + money + re
Optimization terminated successfully.
Current function value: 0.481178
Iterations 8
Logit Regression Results

Dep. Variable: is_spam No. Observations: 4601
Model: Logit Df Residuals: 4596
Method: MLE Df Model: 4
Date: Tue, 09 May 2023 Pseudo R-squ.: 0.2824
Time: 22:06:40 Log-Likelihood: -2213.9
converged: True LL-Null: -3085.1
Covariance Type: nonrobust LLR p-value: 0.000

coef stderr =z P>lzl [0.025 0.975]

Intercept -1.0666 0.043 -24.680 0.000 -1.151 -0.982
char_dollar 11.8176 0.605 19.549 0.000 10.633 13.002
credit 23119 0.343 6.741 0.000 1.640 2.984
money 1.9933 0.248 8.022 0.000 1.506 2.480
re -0.7755 0.099 -7.805 0.000 -0.970 -0.581

Interpreting logistic
regression coefficients

Pr(Y; = 1) = logit ™" (Bo + B1%i1 + -+ - + BpTip)

Interpreting logistic
regression coefficients

Pr(Y; = 1) = logit™" (Bo + f1@i1 + -+ - + BpTip)

logit (Pr(Y; = 1)) = Bo + f1zin + -+ - + BpZip

Interpreting logistic
regression coefficients

Pr(Y; = 1) = logit™" (8o + Biwi1 + -+ + BpTip)

logit (Pr(Y; = 1)) = Bo + f1zin + -+ - + BpZip

o (Pr(Y; = 1)

1—Pr(Y7;: 1>) :60+J61$i1+"'+/8p$ip

Interpreting logistic
regression coefficients

log (Pr(Y; =1)

1 — Pr(Y, = 1)> = Po + P1xi1 +

"A 1unitincrease in x is associated with a f§ increase in the
log odds of Yi=1",

But, the average gambler doesn't usually think on the log
odds scale!

"'+/Bpx’ip

Interpreting logistic
regression coefficients

Pr(Y; = 1)

— e 8 e 8 p P

"A 1 unit increase in x is associated with an e® multiplicative
increase of the odds of Yi=1"

Coefficients are additive log odds ratios

'lpp more "money" words in email associated with
increase of +2 in log odds that email is spam'
model .params

Intercept -1.066563
char_dollar 11.817567
credit 2.311898
money 1.993280
re -0.775505

dtype: floaté64

Exponentiated coefs are multiplicative odds ratios
Easier to interpret

'lpp more "money" words in email associated with
7.4x increase in odds that email is spam'
np.exp(model.params)

Intercept 0.344190
char_dollar 135613.881439
credit 10.093568
money 7.339570
re 0.460471

dtype: float64

The “divide by 4" trick

For a logistic regression model, log odds increase linearly as x
increases, but probabilities do not.

But, one can show that for any unit increase in x, Pr(Yi=1) can
change by at most /4.

For example, if $=0.4 for a fitted logistic regression model,
then the maximum possible change in Pr(Yi=1) for any unit
increase in xis 0.1.

