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Linear regression

Real-valued outcomes modeled as a linear combination of 
covariates.



0-1 outcomes
What if outcomes are binary?





Linear regression 
for binary outcomes

You can do it, but the prediction is not guaranteed to be in the 
interval [0,1]. [ Linear probability model. ]











How do you interpret the intercept?

How do you interpret the char_dollar coefficient?
[ Discuss with neighbors ] [ Poll ]



How do you interpret the 
intercept?
A) 0.3346% of sampled emails are spam
B) 33.46% of sampled emails are spam
C) 33.46% of blank sampled emails are spam
D) 33.46% of sampled emails without "$", "credit", 

"money", or "re" are spam



How do you interpret the 
char_dollar coefficient?
A) 58.55% of sampled emails containing "$" are spam
B) A 1% increase in the proportion of characters in an email 

that are "$" is associated with a 58.55pp increase in the 
probability that the email is spam

C) One additional "$" character in a sampled email is 
associated with a 58.55% increase in the probability that 
the email is spam

D) A 100pp increase in the proportion of characters in an 
email that are "$" is associated with a 58.55pp increase 
in the probability that the email is spam



If all the covariates are zero, we estimate a 33% probability that the email 
is spam.



For every one unit increase in char_dollar, we estimate a 0.59 increase in 
is_spam (i.e., a 59 percentage point increase in the probability that the 
email is spam)

Note: a 59pp increase is different than a 59% increase!



Impossible predictions!



Logistic regression
Model the probability of occurrence

We seek to estimate the probability that

● it will rain on a particular day
● voter will vote for a Democrat
● message is spam



A fundamental problem

Probabilities fall in the range [0,1].

Linear combinations can take on any value in (-∞, +∞).
[ For example, the range of 3x

1
+5x

2
 is (-∞, +∞) ]

How can we transform [0,1] → (-∞, +∞) ?



Candidate functions

exp(x) maps [0, 1] → [1, e]

log(x) maps [0, 1] → (-∞, 0]

       maps [0,1] → (-∞, +∞)

                          



The logit function



More realistic outcomes

Instead of getting impossible outcomes with this model:

We could more accurately model outcomes like this:



Odds

"log odds" of Yi=1 occurring

"odds" of Yi=1 occurring



Odds

Suppose the probability you will win a race is 60%.

Your odds of winning are 3 to 2 (i.e., 1.5).

"odds" of Yi=1 occurring



Odds

Suppose I told you that I could double your odds of winning.

Your current Pr(Win) is 0.6. 

What is your new Pr(Win)?
[ Discuss with neighbors ]



Suppose I told you that I could double 
your odds of winning.
Your current Pr(Win) is 0.6. 
What is your new Pr(Win)?

A) 1.2
B) 0.8
C) 0.75
D) Impossible to double odds



Odds

Suppose I told you that I could double your odds of winning.

Your current Pr(Win) is 0.6. 

What is your new Pr(Win)?

Old odds are 1.5 → New odds are 3 → New Pr(Win) is .75



Odds

What if we keep doubling our odds?

Odds p

1 0.5

2 0.67

4 0.8

8 0.88

16 0.94

32 0.97

64 0.98



Log odds

Probabilities must be between 0 and 1

Odds can be any number from 0 to infinity

Log odds can be any number from -infty to infty



Log odds

Instead of getting impossible outcomes with this model:

We could more accurately model outcomes like this:



Inverse functions

maps [0,1] → (-∞, +∞)

maps (-∞, +∞) → [0,1]





Logistic regression
Model the probability of occurrence



Maximum likelihood estimation
Logistic regression

Very similar to Bernoulli MLE!





Interpreting logistic 
regression coefficients



Interpreting logistic 
regression coefficients



Interpreting logistic 
regression coefficients



Interpreting logistic 
regression coefficients

"A 1 unit increase in x is associated with a 𝛃 increase in the 
log odds of Yi=1".

But, the average gambler doesn't usually think on the log 
odds scale!



Interpreting logistic 
regression coefficients

"A 1 unit increase in x is associated with an e𝛃 multiplicative 
increase of the odds of Yi=1"





The "divide by 4" trick

For a logistic regression model, log odds increase linearly as x 
increases, but probabilities do not.

But, one can show that for any unit increase in x, Pr(Yi=1) can 
change by at most 𝛃/4.

For example, if 𝛃=0.4 for a fitted logistic regression model, 
then the maximum possible change in Pr(Yi=1) for any unit 
increase in x is 0.1.


