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Announcements

▶ Quizzes will be every other week (weeks 2,4,6,8,10) either
in-class on W or take-home on F

▶ Section today will involve candy. . .

▶ Info posted to website on projects
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Confusions from last time

▶ z-score

▶ θ vs θ̂

▶ estimator

▶ standard error

▶ confidence interval

▶ CLT

▶ analytic vs computational solution
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Pearson vs Fisher

▶ what is a distribution?

▶ parameters

▶ statistics aka estimators

source: David Salzburg, “The Lady Tasting Tea: How Statistics
Revolutionized Science in the Twentieth Century”
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Models and samples

a statistical model says how data is generated

example: we model a coin flip as a Bernoulli random variable
with parameter θ

we can sample from that model to create a dataset

example: X1, . . . ,Xn ∼ Bernoulli(θ)
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Application: process control

▶ Intel produces microprocessors and integrated circuits with
varying performance using a complex process.

▶ Chips are binned based on performance, with
higher-performing chips assigned to higher grades.

▶ Lower-performing chips are assigned to lower grades and
sold as lower-end models.

▶ Binning chips allows manufacturers to maximize their
process and offer customers a range of performance options.
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Outline

Models and inference

Normal approximation

Confidence intervals
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Inference

inference goes backwards: we use the data to make statements
about the model

▶ also called learning the model or distribution

example: we can learn the parameter θ from the data

one important kind of inference is estimation: we use the data
to estimate some parameter of the model

▶ e.g., a mean or variance

▶ point estimate: a single value

▶ confidence interval: a range of values likely to contain the
parameter

Q: how to estimate θ from X1, . . . ,Xn?
A: θ̂ = 1

n

∑n
i=1 Xi
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Bias of an estimator

Definition

the bias of estimator θ̂ is E[θ̂]− θ

the estimator is unbiased if E[θ̂] = θ

Q: What is the bias of θ̂ = 1
n

∑n
i=1 Xi?

A:

θ̂ − θ =
1

n

n∑
i=1

Xi − θ =
1

n

n∑
i=1

(Xi − θ)

E[θ̂]− θ =
1

n

n∑
i=1

(E[Xi ]− θ) = 0

Poll: what is another example of an unbiased estimator for θ?

9 / 25



Bias of an estimator

Definition

the bias of estimator θ̂ is E[θ̂]− θ

the estimator is unbiased if E[θ̂] = θ

Q: What is the bias of θ̂ = 1
n

∑n
i=1 Xi?

A:

θ̂ − θ =
1

n

n∑
i=1

Xi − θ =
1

n

n∑
i=1

(Xi − θ)

E[θ̂]− θ =
1

n

n∑
i=1

(E[Xi ]− θ) = 0

Poll: what is another example of an unbiased estimator for θ?

9 / 25



Bias of an estimator

Definition

the bias of estimator θ̂ is E[θ̂]− θ

the estimator is unbiased if E[θ̂] = θ

Q: What is the bias of θ̂ = 1
n

∑n
i=1 Xi?

A:

θ̂ − θ =
1

n

n∑
i=1

Xi − θ =
1

n

n∑
i=1

(Xi − θ)

E[θ̂]− θ =
1

n

n∑
i=1

(E[Xi ]− θ) = 0

Poll: what is another example of an unbiased estimator for θ?

9 / 25



Consistency of an estimator

estimator θ̂ is consistent if θ̂ → θ as n → ∞

Q: Is the estimator θ̂ = 1
n

∑n
i=1 Xi consistent?

A: The sample mean is consistent because 1
nnθ → θ.

Poll: which of these estimators is consistent?
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Standard error

the standard deviation of θ̂ is called the standard error

se(θ̂) =

√
Var[θ̂]

we call the estimated standard error ŝe

example:

▶ if θ̂ = 1
n

∑n
i=1 Xi , then se = VarX

n
why?

Var[θ̂] = Var[
1

n

n∑
i=1

Xi ] =
1

n2

n∑
i=1

Var[Xi ] =
1

n2
nVarX =

VarX

n

▶ for our coin flip model, ŝe =
√

θ(1−θ)
n

why? VarX = θ(1− θ), so Var[θ̂] = θ(1−θ)
n
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Demo

https://colab.research.google.com/github/

stanford-mse-125/demos/blob/main/inference.ipynb
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Central limit theorem

the central limit theorem says that the distribution of
θ̂ = 1

n

∑n
i=1 Xi is approximately normal with mean θ and

variance VarX/n = se(θ)2

θ̂ − θ

se
→ N (0, 1)

▶ the distribution of θ̂ is approximately normal with mean θ
and standard deviation se

▶ also true if the standard error se is replaced by the
estimated standard error ŝe

assumptions:

▶ EX = θ
▶ VarX is finite

example: for our coin flip model, θ̂ ∼ N (θ, θ(1−θ)
n )
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Why use a normal approximation?

▶ normal distribution has just two parameters

▶ can estimate those parameters from data

▶ we can use those parameters to reason about tails of
distribution

define the z-score: the number of standard deviations away
from the mean

z =
θ̂ − θ

se
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Demo

https://colab.research.google.com/github/

stanford-mse-125/demos/blob/main/inference.ipynb
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Confidence interval

a confidence interval is an interval C likely to contain the
parameter e.g. the (1− α) confidence interval satisfies

P[θ ∈ C ] ≥ 1− α

▶ C is a random variable: it depends on the data X1, . . . ,Xn

▶ θ is fixed

two interpretations (e.g., for 95% confidence interval C ):

▶ if we repeat the experiment, we expect C to contain θ
100(1− α)% of the time

▶ if we do a bunch of different experiments, we expect the
95% confidence interval to contain the true value of θ for
95% of the experiments
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Confidence intervals: examples

opinion polls:

▶ 49% ± 3% think U.S. should lift Cuba embargo.

▶ 38% ± 3% think U.S. should build more nuclear power
plants.

▶ 16% ± 4% think St. Louis Cardinals will win the World
Series.

demographic surveys:

▶ The average height of adult males in the United States is
between 5 feet 7 inches and 5 feet 10 inches

▶ The average salary of software engineers in San Francisco is
between $120,000 and $140,000
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Confidence intervals: examples

medical research:

▶ average weight loss of participants in a weight loss program
is between 10 and 15 pounds

operations management:

▶ the mean response time of the website is between 2 and 3
seconds

▶ the mean time to check out at the grocery store is between
2 and 3 minutes
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How to construct confidence interval?

▶ (today) use a normal approximation with analytic formula
for standard error

▶ (later) use a normal approximation with bootstrap estimate
for standard error

▶ (later) use bootstrap quantiles

21 / 25



Normal approximation for confidence interval

Suppose θ̂ ≈ N(θ, se2). Then

C =
[
θ̂ − zα/2ŝe, θ̂ − zα/2ŝe

]
is an approximate (1− α) confidence interval for θ, where zα/2
is the (1− α/2) quantile of the standard normal distribution.

22 / 25



Confidence interval for coin flip

example: for our coin flip model, we can construct a
100(1− α)% confidence interval for θ as

θ̂ ± zα/2ŝe

where zα/2 is the (1− α/2) quantile of the standard normal
distribution

e.g., for α = 0.05, we use z0.025 = 1.96
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Calibration

A (1− α) confidence interval is called calibrated if

P[θ ∈ C ] ≈ 1− α

▶ if confidence interval is too large, it’s useless

▶ if confidence interval is too small, it’s wrong
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Proof that normal confidence interval is calibrated

Proof:

Pr(θ ∈ Cn) = Pr(θ̂n − zα/2ŝe ≤ θ ≤ θ̂n + zα/2ŝe)

= Pr(−zα/2ŝe ≤ θ − θ̂n ≤ zα/2ŝe)

= Pr

(
−zα/2 ≤

θ − θ̂n
ŝe

≤ zα/2

)
≈ Pr

(
−zα/2 ≤ Z ≤ zα/2

)
= 1− α

▶ ŝe approximates the standard deviation of θ̂
▶ the central limit theorem says that θ̂ is approximately

normal, so the standard deviation controls the tails of the
distribution

=⇒ CI is calibrated if number of samples n is large enough to
justify approximations
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