MS\&E 125: Intro to Applied Statistics

Hypothesis Testing

Professor Udell
Management Science and Engineering Stanford

April 28, 2023

Announcements

- Thursday 11:59pm (4/27): HW 3
- Friday (4/28): Project proposal (Required project meetings happen this week)
- Next Monday (5/1): Quiz 1 (in class)

Outline

Hypothesis testing

Comparing two samples

Choosing a cutoff

Multiple hypotheses

Summary

Jury selection

Amendment VI of the United States Constitution states, In all criminal prosecutions, the accused shall enjoy the right to a speedy and public trial, by an impartial jury of the State and district wherein the crime shall have been committed.

Swain vs. Alabama (1965)

- Robert Swain, a Black man, was convicted in Talladega County, Alabama, in 1962
- 26% of eligible jurors were Black
- jurors were selected from among 100 panelists
- only 8 of the 100 panelists were Black

Poll: was the jury rigged?

Hypothesis testing

how likely is this outcome, if the jury were selected at random?

- null hypothesis: the jury was selected at random from the eligible population
- alternative hypothesis: Black jurors were underrepresented
- test statistic: the number of Black jurors

Demo

approach:

- simulate the jury selection process many times
- visualize the sampling distribution of the test statistic using simulation
- compute the p-value: the proportion of simulations where the test statistic is at least as extreme as the observed value
- if the p-value is small (often, <.05), we reject the null hypothesis
https://colab.research.google.com/github/
stanford-mse-125/demos/blob/main/testing.ipynb

Statistics on the supreme court

Swain vs. Alabama (1965): "the overall percentage disparity has been small"

- how was the supreme court measuring the disparity?
- how would you suggest measuring it?

Outline

Hypothesis testing

Comparing two samples

Choosing a cutoff

Multiple hypotheses

Summary

Deflategate

the New England Patriots were accused of deflating footballs in the 2015 AFC Championship game

- NFL rules require footballs to be inflated to $12.5-13.5 \mathrm{psi}$
- each team must ensure their footballs are properly inflated
- Colts intercepted a ball and measured <12.5 psi
- Patriots were accused of deflating the footballs to make them easier to grip

Comparing two samples

- null hypothesis: the two samples are drawn from the same population
- alternative hypothesis: the two samples are drawn from different populations
- test statistic: the difference between the two sample means

Demo

approach:

- simulate the process of assigning footballs to teams many times
- visualize the sampling distribution of the test statistic using simulation
- compute the p-value: the proportion of simulations where the test statistic is at least as extreme as the observed value
- if the p-value is small (often, <.05), we reject the null hypothesis
https://colab.research.google.com/github/ stanford-mse-125/demos/blob/main/testing.ipynb

Outline

Hypothesis testing

Comparing two samples

Choosing a cutoff

Multiple hypotheses

Summary

Choosing a cutoff

the p-value is the probability of observing a test statistic at least as extreme as the one observed, under the null hypothesis

- example: if the p-value is 0.05 , then there is a 5% chance of observing a test statistic at least as extreme as the one observed, under the null hypothesis
in typical parlance, we say
- a p-value >0.05 is not statistically significant
- a p-value <0.05 is statistically significant
- a p-value <0.01 is highly statistically significant

One-sided vs two-sided tests

- one-sided test: what is the probability under the null that the test statistic Y is at least as extreme as the observed value?
- two-sided test: what is the probability under the null that the absolute value of the test statistic is at least as extreme as the observed value?

Statistical vs practical significance

- an effect is statistically significant if it is unlikely to be due to chance
- an effect is practically significant if the observed effect is large enough to be considered important in a clinical or practical sense
a statistically significant result may not be practically significant if the effect size is small.

Statistical vs practical significance

- an effect is statistically significant if it is unlikely to be due to chance
- an effect is practically significant if the observed effect is large enough to be considered important in a clinical or practical sense
a statistically significant result may not be practically significant if the effect size is small.
example:
- medical study tests if a new drug reduces blood pressure
- after data analysis, effect has $p=0.0126<.01$
- but estimated effect size is small: 2 mmHg (n.b., a cup of coffee can raise blood pressure by 5 mmHg)
- drug side effects: nausea, dizziness, fatigue
- would you recommend the drug?

False positives vs false negatives

- false positive: we reject the null hypothesis when it is true
- false negative: we fail to reject the null hypothesis when it is false
example: cancer screening based on blood test
- cost of false positive: unnecessary treatment
- cost of false negative: cancer goes undetected
cost is different for different patients, so cutoff should also be different!

Example: prostate cancer screening

PSA (prostate-specific antigen) is a protein produced by the prostate gland

- most men w/o prostate cancer have PSA $<4 \mathrm{ng} / \mathrm{ml}$
- men with PSA between 4 and $10 \mathrm{ng} / \mathrm{ml}$ have a 25% chance of having prostate cancer
- men with PSA > $10 \mathrm{ng} / \mathrm{ml}$ have a 50% chance of having prostate cancer

Poll: who has a higher cost for a false positive? for a false negative? what cutoff would you use for follow-up testing in

- 80yo patient
- 40yo patient

Outline

> Hypothesis testing

> Comparing two samples

> Choosing a cutoff

Multiple hypotheses

Summary

Multiple hypothesis testing

Multiple hypothesis testing

imagine the experiment:

- scientists divide students into test and control population

Multiple hypothesis testing

imagine the experiment:

- scientists divide students into test and control population
- scientists give the test group jellybeans

Multiple hypothesis testing

imagine the experiment:

- scientists divide students into test and control population
- scientists give the test group jellybeans
- (what do they give the control group?)

Multiple hypothesis testing

imagine the experiment:

- scientists divide students into test and control population
- scientists give the test group jellybeans
- (what do they give the control group?)
- scientists compare the students' acne levels

Multiple hypothesis testing

imagine the experiment:

- scientists divide students into test and control population
- scientists give the test group jellybeans
- (what do they give the control group?)
- scientists compare the students' acne levels
- null hypothesis: jellybeans have no effect on acne

Multiple hypothesis testing

imagine the experiment:

- scientists divide students into test and control population
- scientists give the test group jellybeans
- (what do they give the control group?)
- scientists compare the students' acne levels
- null hypothesis: jellybeans have no effect on acne
- alternative hypothesis: jellybeans have an effect on acne

Multiple hypothesis testing

imagine the experiment:

- scientists divide students into test and control population
- scientists give the test group jellybeans
- (what do they give the control group?)
- scientists compare the students' acne levels
- null hypothesis: jellybeans have no effect on acne
- alternative hypothesis: jellybeans have an effect on acne
- test statistic: proportion of patients with acne in test vs control group

Demo

https://colab.research.google.com/github/ stanford-mse-125/demos/blob/main/testing.ipynb

What to do?

if you read a scientific finding, consider

- how many hypotheses do you think they tested to find this result?
- how many similar hypotheses did other research groups test?

What to do?

if you read a scientific finding, consider

- how many hypotheses do you think they tested to find this result?
- how many similar hypotheses did other research groups test?
in your own work, consider methods to control the false discovery rate (FDR)
- Bonferonni correction: divide the cutoff significance level by the number of hypotheses tested
- ...many more!

Outline

Hypothesis testing
Comparing two samples
Choosing a cutoff
Multiple hypotheses

Summary

Demo

> https://colab.research.google.com/github/ stanford-mse-125/demos/blob/main/bootstrap_ cheatsheet.ipynb

