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Forecasting time series

A time series, x1, x2, x3, . . . is a data sequence observed over
time, for example,

▶ demand for parts

▶ sales of a product

▶ unemployment rate

we’ll study special methods for forecasting time series.

▶ develop an algorithm to track the time series and to
extrapolate into the future
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Constant mean model: introduction

Suppose demand for a product follows the (very) simple model

xn = µ+ εn

Here

▶ xn = demand for time period n

▶ µ is the expected demand – constant in this simple model

▶ ε1, ε2, . . . are independent with mean 0

▶ the best forecast of a future value of xn is µ

▶ we want to estimate µ and update the estimate as each
new xn is observed
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Constant mean model: forecasts

Suppose we estimate the demand as an average of the observed
values

µ̂n =
x1 + · · ·+ xn

n

Define x̂n(ℓ) to be the ℓ-step ahead forecast at time period n

▶ x̂n(ℓ) is the forecast at time n of demand at time n + ℓ

▶ forecast might change as we observe more data

Then, in this simple model, the best forecasts at time n are

x̂n(ℓ) = µ̂n, for all ℓ > 0
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Constant mean model: updating µ̂n

In this simple model, µ does not change, but our estimate of µ
does

easy to update µ̂n to µ̂n+1:

µ̂n+1 =
(x1 + · · ·+ xn) + xn+1

n + 1

=
n

n + 1
µ̂n +

1

n + 1
xn+1

= µ̂n +
1

n + 1
(xn+1 − µ̂n)
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Advantages of the updating formula

The simple updating formula

µ̂n+1 = µ̂n +
1

n + 1
(xn+1 − µ̂n)

has several advantages:

▶ reduced storage
▶ we only store µ̂n

▶ computational speed
▶ the mean need not be recomputed each time

▶ suggests ways to handle a slowly changing mean
▶ coming soon
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Lake Huron level – example with a slowly changing

mean
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Slowly changing mean model: introduction

▶ Now suppose that

xn = µn + εn

where µn is slowly changing

▶ The forecast is the same as for the constant mean model:

x̂n(ℓ) = µ̂n, for all ℓ > 0

▶ What changes is the way µ̂n is updated

▶ We need µ̂n to track µn
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Slowly changing mean: updating

▶ For a constant mean, the update is

µ̂n+1 = µ̂n +
1

n + 1
(xn+1 − µ̂n)

▶ For a slowly changing mean, the update is

µ̂n+1 = µ̂n + α(xn+1 − µ̂n) = (1− α)µ̂n + αxn+1

for a constant α

▶ α is adjusted depending on how fast µn is changing

▶ 0 < α < 1

▶ faster changes in µ necessitate larger α
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Demo: Exponential smoothing

https://colab.research.google.com/github/

stanford-mse-125/demos/blob/main/forecasting.ipynb
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Exponential weighting

Start with the updating equation and iterate backwards:

µ̂n+1 = (1− α)µ̂n + αxn+1

= (1− α){µ̂n−1(1− α) + αxn}+ αxn+1

= (1− α)2µ̂n−1 + (1− α)αxn + αxn+1

= (1− α)3µ̂n−2 + (1− α)2αxn−1 + (1− α)αxn + αxn+1

≈ α

{
xn+1 + (1− α)xn + (1− α)2xn−1

+(1− α)3xn−2 + · · ·+ (1− α)nx1

}
Hence µ̂n+1 is an exponentially weighted moving average Large
values of α mean faster discounting of the past values.
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Exponential weighted moving average (math)

Use previous page + summation formula for geometric series
(see next page):

µ̂n+1 ≈

α

{
(1−α)0xn+1+(1−α)1xn+(1−α)2xn−1+ · · ·+(1−α)nx1

}

≈

{
(1− α)0xn+1 + (1− α)1xn + (1− α)2xn−1 + · · ·+ (1− α)nx1

}
1 + (1− α) + · · ·+ (1− α)n
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Summing a geometric series (math)

Assume |γ| < 1 so γn → 0 as n → ∞

1 + γ + γ2 + · · ·+ γn =
1− γn+1

1− γ
≈ 1

1− γ
(if n is large enough)

Now let γ = 1− α. Then

1 + (1− α) + · · ·+ (1− α)n ≈ 1

α

since 1− (1− α) = α.
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Exponential weights: examples
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Forecasting with trends: example
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Forecasting with trends and seasonality: example
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Note the seasonal pattern and trend
in this example

▶ typical of business data
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Holt method: forecasting with trend

For now, assume data has trend but no seasonality

Holt’s forecasting method uses a linear trend

estimate at time n of xn+ℓ := x̂n(ℓ) = µ̂n + β̂nℓ

▶ n is “origin” – time when forecasts are being made

▶ ℓ is the “lead” – how far ahead one is forecasting

▶ µ̂n is called the level

▶ β̂n is called the slope

Both µ̂n and β̂n are updated as we make more observations n
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Holt method: Updating the level

In the Holt model, the level µ̂n is updated by the equation:

µ̂n+1 = (1− α)(µ̂n + β̂n) + αxn+1

or, equivalently,

µ̂n+1 = µ̂n + (1− α)β̂n + α(xn+1 − µ̂n)

▶ µ̂n + β̂n is predicted value at time n + 1

▶ α is for updating the level and β for the slope (next)

Compare with previous update equation (for no-trend model):

µ̂n+1 = µ̂n + α(xn+1 − µ̂n) = (1− α)µ̂n + αxn+1
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Holt model: updating the slope

In the Holt model, the slope β̂n is updated by the equation:

β̂n+1 = (1− β)β̂n + β(µ̂n+1 − µ̂n)

or, equivalently,

β̂n+1 = β̂n + β
{
(µ̂n+1 − µ̂n)− β̂n

}
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Demo: Holt’s method

https://colab.research.google.com/github/

stanford-mse-125/demos/blob/main/forecasting.ipynb
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Winters’ additive seasonal method

Winters extended Holt’s method to include seasonality. The
method is usually called Holt-Winters forecasting

Let s be the period length:

▶ s = 4 for quarterly data

▶ s = 12 for monthly data

▶ s = 52 for weekly data

▶ s = 13 for data collected over 4-week periods

▶ s = 24 for hourly data
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Holt-Winters updating

Holt-Winters forecasting can use either of two types of updating

▶ additive

▶ multiplicative

These refer to how the trend and seasonal components are put
together

▶ the trend and seasonal components can be added or
multiplied
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Holt-Winters additive seasonal method

The forecasts are periodic

With the additive methods they are:

x̂n(ℓ) = µ̂n + β̂nℓ+ Ŝn+ℓ−s , for ℓ = 1, 2, . . . , s

= µ̂n + β̂nℓ+ Ŝn+ℓ−2s , for ℓ = s + 1, . . . , 2s

and so forth
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Winters’ additive seasonal model: updating

µ̂n+1 = α(xn+1 − Ŝn+1−s) + (1− α)(µ̂n + β̂n)

β̂n+1 = β(µ̂n+1 − µ̂n) + (1− β)β̂n

Ŝn+1 = γ(xn+1 − µ̂n+1) + (1− γ)Ŝn+1−s

α, β, and γ are “tuning parameters” that we need to adjust
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Why we need multiplicative seasonal models
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Notice the multiplicative behavior

▶ the seasonal fluctuations are larger where the trend is larger
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Holt-Winters multiplicative seasonal method

x̂n(ℓ) = (µn + β̂nℓ)Ŝn+ℓ−s , for ℓ = 1, 2, . . . , s

= (µn + β̂nℓ)Ŝn+ℓ−2s , for ℓ = s + 1, . . . , 2s

and so forth
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Winters’ multiplicative seasonal model: updating

µ̂n+1 = α
xn+1

Ŝn+1−s

+ (1− α)(µ̂n + β̂n)

β̂n+1 = β(µ̂n+1 − µ̂n) + (1− β)β̂n

Ŝn+1 = γ
xn+1

µ̂n+1
+ (1− γ)Ŝn+1−s
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Demo: Exponential smoothing

https://colab.research.google.com/github/

stanford-mse-125/demos/blob/main/forecasting.ipynb

Applications:

▶ Lake Huron

▶ US population

▶ CO2

▶ Airline passengers

▶ Sales

32 / 43

https://colab.research.google.com/github/stanford-mse-125/demos/blob/main/forecasting.ipynb
https://colab.research.google.com/github/stanford-mse-125/demos/blob/main/forecasting.ipynb


Outline

Residuals

Selecting the tuning parameters

Forecasting using regression

33 / 43



Residuals

For given values of α, β, and γ:

▶ µ̂n, β̂n, Ŝn, . . . , Ŝn−s are the level, slope, and seasonalities at
time n

▶ x̂n+1 = xn(1) = µ̂n + β̂n + Ŝn+1−s is the one-step ahead
forecast at time n

▶ ϵ̂n+1 = xn+1 − x̂n+1 is the residual or one-step ahead
forecast error
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Choosing α, β, and γ

α, β, and γ are called “tuning parameters”

Suppose we have data x1, . . . , xN :

▶ the usual way to select α, β, and γ is to minimize

SS(α, β, γ) =
N∑

n=N1+1

ϵ̂2n

where the first N1 residuals are discarded to let the

forecasting method “burn-in”

▶ this technique is used by statsmodels, unless the user

specifies the parameters explicitly in the fit call
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Comparing forecasting methods and diagnosing

problem

▶ Two or more forecasting methods can be compared using

min
α,β,γ

SS(α, β, γ)

▶ If a forecasting method is working well, then the residuals
should not exhibit autocorrelation
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Air passengers: additive seasonal method

Air Passengers, additive Holt−Winters
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Notice some autocorrelation at small lags.

37 / 43



Air passengers: multiplicative seasonal method

Air Passengers, multiplicative Holt−Winters
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Less autocorrelation than with additive model (good).
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Forecasting using regression

In some situations, regression can be used for forecasting

▶ in the following example, regression will be used to forecast
Stove Top product 285280
▶ this is the product that we forecast earlier with Holt-Winters

▶ the regression model will have seasonal effects but not
trend
▶ the seasonal effects will be introduced by using month as a

factor

▶ regression uses all the data to estimate the level and the
seasonal effects
▶ so there is no discounting of the past
▶ this helps us deal with the small amount of data
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Stove Top product 285280 forecasts using regression
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Holt-Winters product 285280 forecasts:

log transformed, zoom in

Holt−Winters forecasts, 
   id = 285280, log transformed
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For comparison, here again are the forecasts from Holt-Winters.
The yellow limits are the 95% prediction limits.
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Why is forecasting so difficult with this product?
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Sales patterns vary across years. e.g., in 2002, holiday sales
came earlier. 43 / 43
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