
MS&E 125: Intro to Applied Statistics

Feature Engineering

Professor Udell

Management Science and Engineering
Stanford

May 10, 2023

1 / 48

Announcements

▶ section today

▶ hw6 out today, due next Tuesday

▶ quiz 3 in-person next Monday

2 / 48

Outline

Supervised learning

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal

Missing values

Nonlinear transformations

Location

Text, images, . . .

3 / 48

Supervised learning setup

▶ input space X
▶ x ∈ X is called the covariate, feature, or independent

variable

▶ output space Y
▶ y ∈ Y is called the response, outcome, label, or

dependent variable

▶ given D = {(x1, y1), . . . , (xn, yn)}
▶ D is called the data, examples, observations, samples or

measurements

▶ we will find some h ∈ H so that (we hope!)

h(xi) ≈ yi , i = 1, . . . , n

4 / 48

Supervised learning

different names for different Ys:

▶ classification: Y = {−1, 1}
▶ regression: Y = R

▶ multiclass classification: Y = {car, pedestrian, bike}
▶ ordinal regression:
Y = {strongly disagree, . . . , strongly agree}

5 / 48

Regression

examples where Y = R:

▶ predict credit score of applicant

▶ predict temperature at Stanford a year from today

▶ predict height of child given height of parents

▶ predict price of house given location, square footage, . . .

▶ predict demand for electricity given temperature

careful: are all real number valid predictions?

6 / 48

Regression

examples where Y = R:

▶ predict credit score of applicant

▶ predict temperature at Stanford a year from today

▶ predict height of child given height of parents

▶ predict price of house given location, square footage, . . .

▶ predict demand for electricity given temperature

careful: are all real number valid predictions?

6 / 48

Outline

Supervised learning

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal

Missing values

Nonlinear transformations

Location

Text, images, . . .

7 / 48

Linear models

To fit a linear model (= linear in parameters β)

▶ pick a transformation ϕ : X → Rp

▶ predict y using a linear function of ϕ(x)

ŷ = ϕ(x)Tβ =

p∑
i=1

βi (ϕ(x))i

8 / 48

Feature engineering

How to pick ϕ : X → Rd?

▶ so response y will depend linearly on ϕ(x)

▶ so number of features p is not too big

if you think this looks like a hack, you’re right!

9 / 48

Feature engineering

How to pick ϕ : X → Rd?

▶ so response y will depend linearly on ϕ(x)

▶ so number of features p is not too big

if you think this looks like a hack, you’re right!

9 / 48

Feature engineering

examples:

▶ adding offset

▶ standardizing features

▶ polynomials

▶ transforming Booleans, ordinals, nominals

▶ handling missing values

▶ ensuring positive predictions

▶ transforming images, text, location

▶ concatenating data

▶ all of the above

https://xkcd.com/2048/

10 / 48

https://xkcd.com/2048/

Outline

Supervised learning

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal

Missing values

Nonlinear transformations

Location

Text, images, . . .

11 / 48

Fitting a polynomial

▶ X = R

▶ let
ϕ(x) = (1, x , x2, x3, . . . , xp−1)

be the vector of all monomials in x of degree < p

▶ now ŷ = βTϕ(x) = β1 + β2x + β3x
2 + · · ·+ βpx

p−1

12 / 48

IMHE and the cubic fit

https://www.washingtonpost.com/politics/2020/05/05/

white-houses-self-serving-approach-estimating-deadliness-coronavirus/
13 / 48

https://www.washingtonpost.com/politics/2020/05/05/white-houses-self-serving-approach-estimating-deadliness-coronavirus/
https://www.washingtonpost.com/politics/2020/05/05/white-houses-self-serving-approach-estimating-deadliness-coronavirus/

Demo: crime

https://colab.research.google.com/github/

stanford-mse-125/demos/blob/main/crime.ipynb

14 / 48

https://colab.research.google.com/github/stanford-mse-125/demos/blob/main/crime.ipynb
https://colab.research.google.com/github/stanford-mse-125/demos/blob/main/crime.ipynb

Model evaluation

how should we measure how good a model is?

▶ (root) mean squared error (RMSE)

▶ mean absolute error (MAE)

▶ coefficient of determination (R2)

15 / 48

Mean square error

mean square error is minimized by the least squares estimator

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

equal to the sum of the residuals squared

16 / 48

Root mean square error

root mean square error is the square root of the mean square
error

σ̂2 =

√√√√1

n

n∑
i=1

(yi − ŷi)2

(the residual standard error is similar, but normalizes by the
residual degrees of freedom n − p − 1 instead of n)

17 / 48

Mean absolute error

mean absolute error is the mean of the absolute value of the
residuals

MAE =
1

n

n∑
i=1

|yi − ŷi |

often makes more sense than RMSE when we care about quality
of the predictions
(e.g., if we will pay a linear penalty for being wrong)

18 / 48

Coefficient of determination

coefficient of determination R2 ∈ [0, 1] is the fraction of the
variance in the data that is explained by the model

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
= 1− MSE

Var(y)
= 1− SSR

SST

lingo:

▶ SSR is the sum of squares of the residuals

▶ SST is the total sum of squares

for a model with an intercept, R2 is the square correlation
between the predicted and true values of y

R2 = [ρ(y , ŷ)]2

19 / 48

Outline

Supervised learning

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal

Missing values

Nonlinear transformations

Location

Text, images, . . .

20 / 48

Notation: boolean indicator function

define

1(statement) =

{
1 statement is true

0 statement is false

examples:

▶ 1(1 < 0) = 0

▶ 1(17 = 17) = 1

21 / 48

Boolean variables

▶ X = {true, false}
▶ let ϕ(x) = 1(x)

22 / 48

Nominal values: one-hot encoding

▶ nominal data: e.g., X = {apple, orange, banana}
▶ let

ϕ(x) = [1(x = apple),1(x = orange),1(x = banana)]

▶ called one-hot encoding: only one element is non-zero

extension: sets

23 / 48

Nominal values: one-hot encoding

▶ nominal data: e.g., X = {apple, orange, banana}
▶ let

ϕ(x) = [1(x = apple),1(x = orange),1(x = banana)]

▶ called one-hot encoding: only one element is non-zero

extension: sets

23 / 48

Demo: crime

https://colab.research.google.com/github/

stanford-mse-125/demos/blob/main/crime.ipynb

24 / 48

https://colab.research.google.com/github/stanford-mse-125/demos/blob/main/crime.ipynb
https://colab.research.google.com/github/stanford-mse-125/demos/blob/main/crime.ipynb

Nominal values: the long tail

▶ problem: too many nominal categories
▶ solution:

▶ cluster the categories by some known ontology
(eg, “squamous cell carcinoma” → “cancer”)

▶ lump the least common categories into a single category:
“Other”

▶ feature hashing
▶ . . . be creative!

25 / 48

Nominal values: the long tail

▶ problem: too many nominal categories
▶ solution:

▶ cluster the categories by some known ontology
(eg, “squamous cell carcinoma” → “cancer”)

▶ lump the least common categories into a single category:
“Other”

▶ feature hashing
▶ . . . be creative!

25 / 48

Nominal values: the long tail

▶ problem: too many nominal categories
▶ solution:

▶ cluster the categories by some known ontology
(eg, “squamous cell carcinoma” → “cancer”)

▶ lump the least common categories into a single category:
“Other”

▶ feature hashing
▶ . . . be creative!

25 / 48

Nominal values: the long tail

▶ problem: too many nominal categories
▶ solution:

▶ cluster the categories by some known ontology
(eg, “squamous cell carcinoma” → “cancer”)

▶ lump the least common categories into a single category:
“Other”

▶ feature hashing

▶ . . . be creative!

25 / 48

Nominal values: the long tail

▶ problem: too many nominal categories
▶ solution:

▶ cluster the categories by some known ontology
(eg, “squamous cell carcinoma” → “cancer”)

▶ lump the least common categories into a single category:
“Other”

▶ feature hashing
▶ . . . be creative!

25 / 48

Nominal values: look up features!

why not use other information known about each item?

▶ X = {apple, orange, banana}
▶ price, calories, weight, . . .

▶ X = zip code
▶ average income, temperature in July, walk score, . . .

▶ . . .

database lingo: join tables on nominal value

26 / 48

Ordinal values: real encoding

▶ ordinal data: e.g.,
X = {Stage I,Stage II,Stage III, Stage IV}

▶ let

ϕ(x) =

1, x = Stage I

2, x = Stage II

3, x = Stage III

4, x = Stage IV

▶ default encoding

27 / 48

Ordinal values: real encoding

▶ X = {Stage I,Stage II,Stage III, Stage IV}
▶ Y = R, number of years lived after diagnosis

▶ use real encoding ϕ to transform ordinal data

▶ fit linear model with offset to predict y as β0 + β1ϕ(x)

Suppose model predicts a person diagnosed with Stage II cancer
will survive 2 more years, and a person diagnosed with Stage I
cancer will survive 4 more years.

Q: What is β0? β1?

28 / 48

Ordinal values: real encoding

▶ X = {Stage I,Stage II,Stage III, Stage IV}
▶ Y = R, number of years lived after diagnosis

▶ use real encoding ϕ to transform ordinal data

▶ fit linear model with offset to predict y as β0 + β1ϕ(x)

Suppose model predicts a person diagnosed with Stage II cancer
will survive 2 more years, and a person diagnosed with Stage I
cancer will survive 4 more years.
Q: What is β0? β1?

28 / 48

Ordinal values: real encoding

▶ X = {Stage I,Stage II,Stage III, Stage IV}
▶ Y = R, number of years lived after diagnosis

▶ use real encoding ϕ to transform ordinal data

▶ fit linear model with offset to predict y as β0 + β1ϕ(x)

Suppose model predicts a person diagnosed with Stage II cancer
will survive 2 more years, and a person diagnosed with Stage I
cancer will survive 4 more years: β0 = 6, β1 = −2.

Q: How long does the model predict a person with Stage IV
cancer will survive?

A. 6 years

B. 2 years

C. 0 years

D. -2 years

29 / 48

Ordinal values: real encoding

▶ X = {Stage I,Stage II,Stage III, Stage IV}
▶ Y = R, number of years lived after diagnosis

▶ use real encoding ϕ to transform ordinal data

▶ fit linear model with offset to predict y as β0 + β1ϕ(x)

Suppose model predicts a person diagnosed with Stage II cancer
will survive 2 more years, and a person diagnosed with Stage I
cancer will survive 4 more years: β0 = 6, β1 = −2.
Q: How long does the model predict a person with Stage IV
cancer will survive?

A. 6 years

B. 2 years

C. 0 years

D. -2 years

29 / 48

Ordinal values: real encoding

▶ X = {Stage I,Stage II,Stage III, Stage IV}
▶ Y = R, number of years lived after diagnosis

▶ use real encoding ϕ to transform ordinal data

▶ fit linear model with offset to predict y as β0 + β1ϕ(x)

Suppose model predicts a person diagnosed with Stage II cancer
will survive 2 more years, and a person diagnosed with Stage I
cancer will survive 4 more years: β0 = 6, β1 = −2.
Q: How long does the model predict a person with Stage IV
cancer will survive?

A. 6 years

B. 2 years

C. 0 years

D. -2 years

29 / 48

Ordinal values: boolean encoding

▶ ordinal data: e.g.,
X = {Stage I,Stage II,Stage III, Stage IV}

▶ let

ϕ(x) = [1(x ≥ Stage II),1(x ≥ Stage III),1(x ≥ Stage IV)]

30 / 48

Ordinal values: boolean encoding

▶ X = {Stage I,Stage II,Stage III, Stage IV}
▶ Y = R, number of years lived after diagnosis

▶ define transformation ϕ : X → R (with offset) as

ϕ(x) = [1,1(x ≥ Stage II),1(x ≥ Stage III),1(x ≥ Stage IV)]

▶ fit linear model with offset to predict y as βTϕ(x)

Suppose model predicts a person diagnosed with Stage II cancer
will survive 2 more years, and a person diagnosed with Stage I
cancer will survive 4 more years.

Q: What is β?
A: β0 = 4, β1 = −2, β2 and β3 not determined
Q: How long does the model predict a persion with Stage IV
cancer will survive?
A: can’t say without more information

31 / 48

Ordinal values: boolean encoding

▶ X = {Stage I,Stage II,Stage III, Stage IV}
▶ Y = R, number of years lived after diagnosis

▶ define transformation ϕ : X → R (with offset) as

ϕ(x) = [1,1(x ≥ Stage II),1(x ≥ Stage III),1(x ≥ Stage IV)]

▶ fit linear model with offset to predict y as βTϕ(x)

Suppose model predicts a person diagnosed with Stage II cancer
will survive 2 more years, and a person diagnosed with Stage I
cancer will survive 4 more years.
Q: What is β?

A: β0 = 4, β1 = −2, β2 and β3 not determined
Q: How long does the model predict a persion with Stage IV
cancer will survive?
A: can’t say without more information

31 / 48

Ordinal values: boolean encoding

▶ X = {Stage I,Stage II,Stage III, Stage IV}
▶ Y = R, number of years lived after diagnosis

▶ define transformation ϕ : X → R (with offset) as

ϕ(x) = [1,1(x ≥ Stage II),1(x ≥ Stage III),1(x ≥ Stage IV)]

▶ fit linear model with offset to predict y as βTϕ(x)

Suppose model predicts a person diagnosed with Stage II cancer
will survive 2 more years, and a person diagnosed with Stage I
cancer will survive 4 more years.
Q: What is β?
A: β0 = 4, β1 = −2, β2 and β3 not determined

Q: How long does the model predict a persion with Stage IV
cancer will survive?
A: can’t say without more information

31 / 48

Ordinal values: boolean encoding

▶ X = {Stage I,Stage II,Stage III, Stage IV}
▶ Y = R, number of years lived after diagnosis

▶ define transformation ϕ : X → R (with offset) as

ϕ(x) = [1,1(x ≥ Stage II),1(x ≥ Stage III),1(x ≥ Stage IV)]

▶ fit linear model with offset to predict y as βTϕ(x)

Suppose model predicts a person diagnosed with Stage II cancer
will survive 2 more years, and a person diagnosed with Stage I
cancer will survive 4 more years.
Q: What is β?
A: β0 = 4, β1 = −2, β2 and β3 not determined
Q: How long does the model predict a persion with Stage IV
cancer will survive?

A: can’t say without more information

31 / 48

Ordinal values: boolean encoding

▶ X = {Stage I,Stage II,Stage III, Stage IV}
▶ Y = R, number of years lived after diagnosis

▶ define transformation ϕ : X → R (with offset) as

ϕ(x) = [1,1(x ≥ Stage II),1(x ≥ Stage III),1(x ≥ Stage IV)]

▶ fit linear model with offset to predict y as βTϕ(x)

Suppose model predicts a person diagnosed with Stage II cancer
will survive 2 more years, and a person diagnosed with Stage I
cancer will survive 4 more years.
Q: What is β?
A: β0 = 4, β1 = −2, β2 and β3 not determined
Q: How long does the model predict a persion with Stage IV
cancer will survive?
A: can’t say without more information

31 / 48

Outline

Supervised learning

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal

Missing values

Nonlinear transformations

Location

Text, images, . . .

32 / 48

Missing values

handling missing values:

▶ remove rows/columns with missing entries

▶ (for time series) back-fill with most recent observed value

▶ impute with mean, median, or mode

▶ fancier imputation methods (covered later in this class):
matrix completion, copula models, deep learning, . . .

▶ add new feature: Boolean indicator 1(data is missing)
▶ can detect if missingness is informative
▶ can complement imputation method
▶ can use different indicators for different kinds of missingness

(refused, missing, illegible response, . . .)

33 / 48

Missing values

handling missing values:

▶ remove rows/columns with missing entries

▶ (for time series) back-fill with most recent observed value

▶ impute with mean, median, or mode

▶ fancier imputation methods (covered later in this class):
matrix completion, copula models, deep learning, . . .

▶ add new feature: Boolean indicator 1(data is missing)
▶ can detect if missingness is informative
▶ can complement imputation method
▶ can use different indicators for different kinds of missingness

(refused, missing, illegible response, . . .)

33 / 48

Missing values

handling missing values:

▶ remove rows/columns with missing entries

▶ (for time series) back-fill with most recent observed value

▶ impute with mean, median, or mode

▶ fancier imputation methods (covered later in this class):
matrix completion, copula models, deep learning, . . .

▶ add new feature: Boolean indicator 1(data is missing)
▶ can detect if missingness is informative
▶ can complement imputation method
▶ can use different indicators for different kinds of missingness

(refused, missing, illegible response, . . .)

33 / 48

Missing values

handling missing values:

▶ remove rows/columns with missing entries

▶ (for time series) back-fill with most recent observed value

▶ impute with mean, median, or mode

▶ fancier imputation methods (covered later in this class):
matrix completion, copula models, deep learning, . . .

▶ add new feature: Boolean indicator 1(data is missing)
▶ can detect if missingness is informative
▶ can complement imputation method
▶ can use different indicators for different kinds of missingness

(refused, missing, illegible response, . . .)

33 / 48

Missing values

handling missing values:

▶ remove rows/columns with missing entries

▶ (for time series) back-fill with most recent observed value

▶ impute with mean, median, or mode

▶ fancier imputation methods (covered later in this class):
matrix completion, copula models, deep learning, . . .

▶ add new feature: Boolean indicator 1(data is missing)
▶ can detect if missingness is informative
▶ can complement imputation method
▶ can use different indicators for different kinds of missingness

(refused, missing, illegible response, . . .)

33 / 48

Poll

In an ambulance dataset (data taken by instruments on board
an ambulance), we want to predict if the patient died. The
variable “heart rate” is sometimes missing. Is missingness

A. informative?

B. uninformative?

34 / 48

Poll

In a weather dataset, the batteries in the instruments
occasionally run out before the experimenter can replace them,
leaving missing data for eg temperature, humidity, or barometric
pressure. Is missingness

A. informative?

B. uninformative?

35 / 48

Talk to your neighbor

Can you think of a dataset in which missing values would be

▶ informative?

▶ uninformative?

36 / 48

Outline

Supervised learning

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal

Missing values

Nonlinear transformations

Location

Text, images, . . .

37 / 48

Nonlinear transformations

sometimes data is easy to predict with a simple but nonlinear
relation, e.g.

log(y) = xTβ

can transform x or (even more important) y

hints that your data might benefit from a nonlinear transform:

▶ y is positive and heavy-tailed? try y ← log(y)

▶ residuals r = y − xTi β are skewed (not normal)

useful nonlinear transforms:

▶ log, exp, quantile, . . .

Q: which of these might benefit from a log transformation?

38 / 48

Nonlinear transformations

sometimes data is easy to predict with a simple but nonlinear
relation, e.g.

log(y) = xTβ

can transform x or (even more important) y

hints that your data might benefit from a nonlinear transform:

▶ y is positive and heavy-tailed? try y ← log(y)

▶ residuals r = y − xTi β are skewed (not normal)

useful nonlinear transforms:

▶ log, exp, quantile, . . .

Q: which of these might benefit from a log transformation?

38 / 48

Nonlinear transformations

sometimes data is easy to predict with a simple but nonlinear
relation, e.g.

log(y) = xTβ

can transform x or (even more important) y

hints that your data might benefit from a nonlinear transform:

▶ y is positive and heavy-tailed? try y ← log(y)

▶ residuals r = y − xTi β are skewed (not normal)

useful nonlinear transforms:

▶ log, exp, quantile, . . .

Q: which of these might benefit from a log transformation?

38 / 48

Nonlinear transformations

sometimes data is easy to predict with a simple but nonlinear
relation, e.g.

log(y) = xTβ

can transform x or (even more important) y

hints that your data might benefit from a nonlinear transform:

▶ y is positive and heavy-tailed? try y ← log(y)

▶ residuals r = y − xTi β are skewed (not normal)

useful nonlinear transforms:

▶ log, exp, quantile, . . .

Q: which of these might benefit from a log transformation?

38 / 48

Log transform

Q: what happens if x increases by 1 in the model

log(y) = β0 + β1x ,

A: log(y) increases by β1, so y increases by exp (β1)

log(y) = β0 + β1x =⇒ y = exp (β0 + β1x)

log(y ′) = β0 + β1(x + 1) =⇒ y ′ = exp (β0 + β1(x + 1))

y ′ = exp (β0 + β1x) exp (β1)

39 / 48

Log transform

Q: what happens if x increases by 1 in the model

log(y) = β0 + β1x ,

A: log(y) increases by β1, so y increases by exp (β1)

log(y) = β0 + β1x =⇒ y = exp (β0 + β1x)

log(y ′) = β0 + β1(x + 1) =⇒ y ′ = exp (β0 + β1(x + 1))

y ′ = exp (β0 + β1x) exp (β1)

39 / 48

A convenient approximation

▶ for small x , exp (x) ≈ 1 + x ,

▶ e.g., exp (0.01) ≈ 1.01

▶ if x increases by 1%, then y increases by factor of
exp (β1/100)

▶ so if x increases by 1%, then y increases by factor of
≈ β1/100 = β1%

40 / 48

Log transformations of covariates

if we instead log transform x , ŷ increases by β1/100 for each 1%
increase in x .

▶ e.g., if β1 = 3, ŷ increases by 3/100=0.03 units for every
1% increase in x .

if we instead log transform both x and y , ŷ increases by β1% for
each 1% increase in x .

▶ e.g., if β1 = 3, ŷ increases by 3% for every 1% increase in x .

log transformation results in multiplicative increases (rather
than additive)

41 / 48

Outline

Supervised learning

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal

Missing values

Nonlinear transformations

Location

Text, images, . . .

42 / 48

Location

can be given as

▶ latitude, longitude

▶ zip code

▶ neighborhood, county, state, country

can be transformed between these!

which makes sense for your problem?

▶ does nearness matter?

▶ are there sharp boundaries?

▶ are other properties of the location (eg, mean house price
or crime rate) more important?

43 / 48

Location

can be given as

▶ latitude, longitude

▶ zip code

▶ neighborhood, county, state, country

can be transformed between these!

which makes sense for your problem?

▶ does nearness matter?

▶ are there sharp boundaries?

▶ are other properties of the location (eg, mean house price
or crime rate) more important?

43 / 48

Outline

Supervised learning

Feature engineering

Polynomial transformations

Boolean, nominal, ordinal

Missing values

Nonlinear transformations

Location

Text, images, . . .

44 / 48

Text

X = sentences, documents, tweets, . . .

▶ bag of words model (one-hot encoding):
▶ pick set of words {β1, . . . , βd}
▶ ϕ(x) = [1(x contains β1), . . . ,1(x contains βd)]
▶ ignores order of words in sentence

▶ pre-trained neural networks:
▶ sentiment analysis: https://medium.com/@b.terryjack/

nlp-pre-trained-sentiment-analysis-1eb52a9d742c
▶ Universal Sentence Encoder (USE) embedding:

https:

//colab.research.google.com/github/tensorflow/

hub/blob/master/examples/colab/semantic_

similarity_with_tf_hub_universal_encoder.ipynb
▶ lots of others: https://modelzoo.co/

45 / 48

https://medium.com/@b.terryjack/nlp-pre-trained-sentiment-analysis-1eb52a9d742c
https://medium.com/@b.terryjack/nlp-pre-trained-sentiment-analysis-1eb52a9d742c
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/semantic_similarity_with_tf_hub_universal_encoder.ipynb
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/semantic_similarity_with_tf_hub_universal_encoder.ipynb
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/semantic_similarity_with_tf_hub_universal_encoder.ipynb
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/semantic_similarity_with_tf_hub_universal_encoder.ipynb
https://modelzoo.co/

Text

X = sentences, documents, tweets, . . .

▶ bag of words model (one-hot encoding):
▶ pick set of words {β1, . . . , βd}
▶ ϕ(x) = [1(x contains β1), . . . ,1(x contains βd)]
▶ ignores order of words in sentence

▶ pre-trained neural networks:
▶ sentiment analysis: https://medium.com/@b.terryjack/

nlp-pre-trained-sentiment-analysis-1eb52a9d742c
▶ Universal Sentence Encoder (USE) embedding:

https:

//colab.research.google.com/github/tensorflow/

hub/blob/master/examples/colab/semantic_

similarity_with_tf_hub_universal_encoder.ipynb
▶ lots of others: https://modelzoo.co/

45 / 48

https://medium.com/@b.terryjack/nlp-pre-trained-sentiment-analysis-1eb52a9d742c
https://medium.com/@b.terryjack/nlp-pre-trained-sentiment-analysis-1eb52a9d742c
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/semantic_similarity_with_tf_hub_universal_encoder.ipynb
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/semantic_similarity_with_tf_hub_universal_encoder.ipynb
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/semantic_similarity_with_tf_hub_universal_encoder.ipynb
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/semantic_similarity_with_tf_hub_universal_encoder.ipynb
https://modelzoo.co/

Neural networks: whirlwind primer

NN(x) = σ(W1σ(W2 . . . σ(Wℓx))))

▶ σ is a nonlinearity applied elementwise to a vector, e.g.
▶ ReLU: σ(x) = max(x , 0)
▶ sigmoid: σ(x) = log(1 + exp (x))

▶ each W is a matrix of parameters
▶ trained on very large datasets, e.g., Wikipedia, YouTube

46 / 48

Why not use deep learning?

towards a solution: https://arxiv.org/abs/1907.10597

47 / 48

https://arxiv.org/abs/1907.10597

Review

▶ linear models are linear in the parameters β

▶ can fit many different models by picking feature mapping
ϕ : X → Rd

48 / 48

	Supervised learning
	Feature engineering
	Polynomial transformations
	Boolean, nominal, ordinal
	Missing values
	Nonlinear transformations
	Location
	Text, images, …

