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Announcements

▶ hw3 due Tuesday

▶ in-class quiz on Wednesday

▶ project proposal due Friday

▶ keep up the good participation! we can keep the
zoom/async option as long as > 25 people are in the
classroom
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How to construct confidence interval?

▶ (last class) normal approximation with analytic formula for
standard error

▶ use a normal approximation with bootstrap estimate for
standard error

▶ use bootstrap quantiles

now suppose we have no model, only data X1, . . . ,Xn

▶ can’t compute analytic formula for standard error

▶ can’t resample from the distribution

how to estimate uncertainty?
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Motivating question

a 100 year flood is a flood that has a 1% chance of occurring
each year.

how can we estimate a ”100 year flood” level using only data
from one year?
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Independent random variables

Definition

random variables X and Y are independent if

P(X = x ,Y = y) = P(X = x)P(Y = y)

for all x and y .

(given the probability distributions of each), the value of X
doesn’t tell you anything about Y

Definition

random variables X and Y are independent and identically
distributed (iid) if they are independent and
P(X = x) = P(Y = x) for all x .
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Independent vs dependent examples

independent random variables:

▶ the amount of rainfall in two different cities
▶ the outcome of a coin toss
▶ the number of goals scored in a soccer match
▶ the closing stock price of two different companies
▶ the performance of a student on two different tests

dependent random variables:

▶ the number of cars sold by a dealership in one month
compared to the previous month

▶ the amount of time it takes to complete a task versus the
number of people working on it

▶ the height of a person compared to their weight
▶ the speed of a car compared to the amount of fuel it

consumes
▶ the cost of a product compared to its demand
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Empirical distribution

▶ given iid data X1, . . . ,Xn,

▶ estimate the (CDF of the) distribution of X

▶ by the (CDF of the) empirical distribution

F̂n(x) =
1

n

n∑
i=1

1{Xi≤x},

the fraction of the data that is less than or equal to x .
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Plug-in estimator

a plug-in estimator estimates a statistic θ (any function of the
data) by plugging in the empirical distribution:

θ̂n = θ(F̂n).

examples:

▶ mean: θ̂n = 1
n

∑n
i=1 Xi

▶ standard deviation: θ̂n =
√

1
n

∑n
i=1(Xi − θ̂n)2

how to estimate error or produce confidence intervals?
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Bootstrap

idea:

▶ can’t sample from the model

▶ instead, sample from the data

Definition

a bootstrap sample Bn is a sample of size n drawn with
replacement from the data X1, . . . ,Xn

Bn = {Xi1 , . . . ,Xin},

where i1, . . . , in are chosen uniformly at random from {1, . . . , n}.

bootstrap resamples the data

Q: How does the bootstrap sample differ from the original data?
A: Some data points are repeated, others are omitted
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Demo: The bootstrap

https://colab.research.google.com/github/

stanford-mse-125/demos/blob/main/bootstrap.ipynb
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Ideal: sample from the model

for k = 1, . . .

▶ sample new X k
i ∼ P, i = 1, . . . , n, iid

to form dataset Dk

▶ estimate θ̂k = θ(Dk)

Q: How sensitive is the prediction to the data set D?

A: Look at histogram of {θk}k
Q: Can we compute a confidence interval for the statistic θ?
A: Look at 95% confidence bound for {θk}k
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Bootstrap: sample from the data

given dataset D, for k = 1, . . .

▶ sample X k
i ∼ P, i = 1, . . . , n with replacement from D

to form dataset Dk

▶ estimate θ̂k = θ(Dk)

Q: How sensitive is the prediction to the data set D?
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Bootstrap estimator for the variance

pick a function h : D → R.
we want to estimate how much h varies when applied to finite
data sets from the same distribution.

▶ resample D1, . . . ,DK from D
▶ compute h(D1), . . . , h(DK )

▶ estimate the mean µ̂h = 1
K

∑K
k=1 h(Dk)

▶ estimate the variance

σ̂h =

√√√√ 1

K

K∑
k=1

(h(Dk)− µ̂h)2
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Demo: The bootstrap

https://colab.research.google.com/github/

stanford-mse-125/demos/blob/main/bootstrap.ipynb
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Bootstrap confidence intervals

two ways to compute bootstrap confidence intervals:

▶ normal approximation:
▶ use the bootstrap to estimate the variance of the statistic

▶ percentiles of bootstrapped distribution
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Why does bootstrap work?

sample X k
i with replacement from D

P
(
X 1
1 = x

)
=

n∑
i=1

P(picked Xi from D and was equal to x)

=
n∑

i=1

P(picked Xi from D)P(Xi = x)

=
n∑

i=1

1

n
P(x)

= n
1

n
P(x)

= P(x)

so X k
i has the same distribution as Xi (before conditioning on

the data)
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Why does bootstrap work?

Dk each have the same distribution as D. So for any function
h : D → R,

ED
1

K

K∑
k=1

h(Dk) = EDh(D)
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References

▶ The Bootstrap: http://www.stat.cmu.edu/~larry/
=stat705/Lecture13.pdf. Wasserman, CMU Stat 705.
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