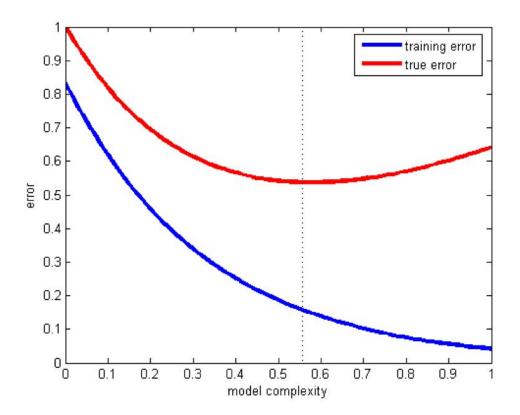
Lecture 13: Bias-variance tradeoff

Madeleine Udell Stanford University

Demo

https://colab.research.google.com/github/stanford-mse-125/ demos/blob/main/crime.ipynb

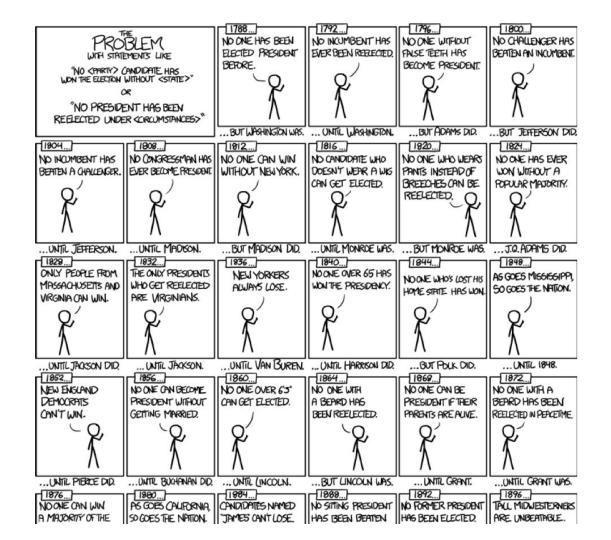
What about performance on new data?



http://stats.stackexchange.com/questions/23331/why-is-there-an-asymmetry-between-the-training-step-and-evaluation-step

Overfitting

The model fits the observed data well, but doesn't generalize well to new instances.



Model complexity

If the model is too complex, you risk **overfitting** by "learning" noise.

If the model is not complex enough, you risk **underfitting** by ignoring signal.

Inherent tradeoff between capturing regularities in the training data and generalizing to unseen examples.

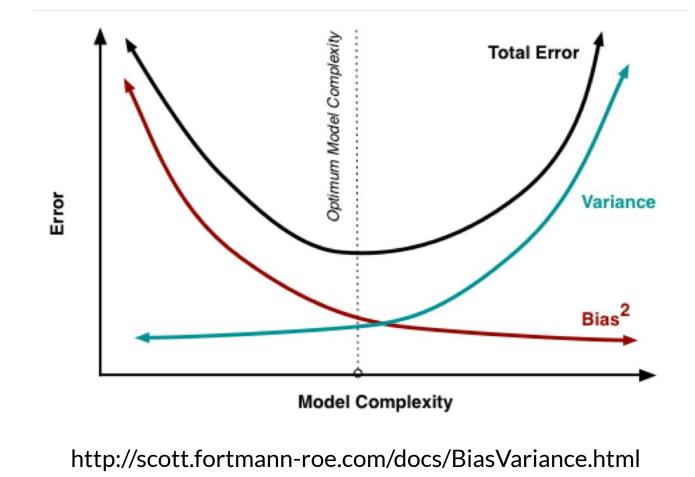
Bias: how closely does your model fit the observed data?

<u>Variance</u>: how much would your model fit vary from sample to sample?

$$y_i = r(x_i) + \epsilon$$
 $\mathbb{E}[\epsilon] = 0$ $\operatorname{Var}[\epsilon] = \sigma^2$

$$y_i = r(x_i) + \epsilon$$
 $\mathbb{E}[\epsilon] = 0$ $\operatorname{Var}[\epsilon] = \sigma^2$
 $\mathbb{E}\left[(y - \hat{r}(x))^2\right] = \operatorname{bias}\left[\hat{r}(x)\right]^2 + \operatorname{Var}\left[\hat{r}(x)\right] + \sigma^2$

Expectation is over random instances of the observed data. As model complexity increases, bias typically decreases and variance typically increases.



An example

$$y_i = 1 + x_i + x_i^2 + \epsilon \;$$
 ------ The true data generating process

Some bias and some variance

$$\hat{y}_i = \hat{eta}_0 + \hat{eta}_1 x_i$$
 — The model you fit to the observed data

An example

$$y_i = 1 + x_i + x_i^2 + \epsilon \;$$
 ------ The true data generating process

Unbiased but more variance

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\beta}_2 x_i^2$$

An example

$$y_i = 1 + x_i + x_i^2 + \epsilon \;$$
 ------ The true data generating process

Unbiased but even more variance

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\beta}_2 x_i^2 + \hat{\beta}_3 x_i^3$$

Training error is computed on the observed data.

$$\overline{\mathrm{err}} = rac{1}{N}\sum_{i=1}^{N}\left(y_i - \hat{r}(x_i)
ight)^2$$

Test error is the expected error on new data.

$$\operatorname{Err} = \mathbb{E}\left[\left(Y - \hat{r}(X)\right)^2\right]$$

Training error underestimates test error.

Model selection

Train, validate, test

Training set Used to fit the models.

Validation set

Used to estimate generalization error for model selection.

Test set

Used to assess performance of the chosen model.

Random subset K-fold cross-validation Leave-one-out cross-validation Temporal partitioning

Random subset

K-fold cross-validation

- 1. Split the data into **K** parts.
- 2. For kth part, train on other K-1 pieces and validate on kth.
- 3. Average error across the validation sets.

Validation/test set construction Leave-one-out cross-validation [LOOCV, K = N]

- 1. Fit the data on all but the kth point.
- 2. Use the fitted model to predict the kth outcome.
- 3. Average error across the predicted outcomes.

There are computational tricks to avoid re-training the model every time.

Temporal partitioning

How might you perform K-fold cross validation with time series data? [Discuss with neighbors]