
MS&E 125: Introduction to Applied Statistics

Automated Machine Learning

Professor Udell

Management Science and Engineering
Stanford University

June 6, 2023

1 / 38

Outline

Why AutoML?

Techniques

Hyperparameter tuning

Pipeline selection

Ensembles and stacking

Metalearning

Systems

Challenges and conclusion

2 / 38

So many machine learning problems. . .

object detection drug discovery

speech recognition social science

3 / 38

. . . so little time

source: https://scikit-learn.org

4 / 38

https://scikit-learn.org

Different models perform differently

source: https://scikit-learn.org

5 / 38

https://scikit-learn.org

Decisions, decisions. . .

a pipeline: a directed graph of learning components

impute missing entries
by mean one-hot-encoderraw dataset

imputer encoder
0 mean and unit

variance for
each feature

PCA
 25% components

kNN
k=5

standardizer dimensionality
reducer estimator

Predictions

Pipeline

so many choices to make:

▶ data imputer: fill in missing values by median? . . .

▶ encoder: one-hot encode? . . .

▶ standardizer: rescale each feature? . . .

▶ dimensionality reducer: PCA, or select by variance? . . .

▶ estimator: use decision tree or logistic regression? . . .

▶ hyperparameters: depth of decision tree?

6 / 38

Poll

Which of these estimators do you think performs best most
often for classification?

▶ logistic regression

▶ decision tree

▶ gradient boosting

▶ multilayer perceptron

▶ SVM

7 / 38

No Free Lunch

On 215 midsize OpenML classification datasets:

▶ The best-on-average pipeline (highest average ranking):

impute missing entries
by mode

encode
categorical as

integer
raw dataset

imputer encoder
0 mean and unit

variance for
each feature

remove features
with 0 variance

gradient boosting w/
learning rate 0.25 and

maximum depth 3

standardizer dimensionality
reducer estimator

Predictions

The baseline pipeline

▶ The best estimator for each dataset:

gradient boosting - 38.60%

multilayer perceptron - 20.93%

kNN - 10.23%

adaboost - 8.84%

extra trees - 5.58%

logistic regression - 5.58%

decision tree - 3.72%

random forest - 3.26%

linear SVM - 1.86%

Gaussian naive Bayes - 1.40%

source: [Yang et al., 2020]

Theorem (No free lunch [Wolpert, 1996])
There is no one model that works best for every problem.

8 / 38

No Free Lunch

On 215 midsize OpenML classification datasets:

▶ The best-on-average pipeline (highest average ranking):

impute missing entries
by mode

encode
categorical as

integer
raw dataset

imputer encoder
0 mean and unit

variance for
each feature

remove features
with 0 variance

gradient boosting w/
learning rate 0.25 and

maximum depth 3

standardizer dimensionality
reducer estimator

Predictions

The baseline pipeline

▶ The best estimator for each dataset:

gradient boosting - 38.60%

multilayer perceptron - 20.93%

kNN - 10.23%

adaboost - 8.84%

extra trees - 5.58%

logistic regression - 5.58%

decision tree - 3.72%

random forest - 3.26%

linear SVM - 1.86%

Gaussian naive Bayes - 1.40%

source: [Yang et al., 2020]

Theorem (No free lunch [Wolpert, 1996])
There is no one model that works best for every problem.

8 / 38

Problem solved!

9 / 38

Definitions

automated machine learning (AutoML) chooses a ML model
+ hyperparameters so you don’t have to.

types of AutoML:

▶ hyperparameter tuning chooses the best hyperparameters
for the model

▶ combined algorithm and hyperparameter search
(CASH) chooses an estimator and hyperparameters

▶ neural architecture search (NAS) chooses a deep
learning architecture
e.g., number of layers, type of layer, width, learning rate

▶ metalearning, or learning to learn, uses information
gleaned from a corpus of datasets to choose a better model
on a new dataset

kinds of datasets: tabular, timeseries, image, text, video,
genomics, . . .

10 / 38

Definitions

automated machine learning (AutoML) chooses a ML model
+ hyperparameters so you don’t have to.

types of AutoML:

▶ hyperparameter tuning chooses the best hyperparameters
for the model

▶ combined algorithm and hyperparameter search
(CASH) chooses an estimator and hyperparameters

▶ neural architecture search (NAS) chooses a deep
learning architecture
e.g., number of layers, type of layer, width, learning rate

▶ metalearning, or learning to learn, uses information
gleaned from a corpus of datasets to choose a better model
on a new dataset

kinds of datasets: tabular, timeseries, image, text, video,
genomics, . . .

10 / 38

Definitions

automated machine learning (AutoML) chooses a ML model
+ hyperparameters so you don’t have to.

types of AutoML:

▶ hyperparameter tuning chooses the best hyperparameters
for the model

▶ combined algorithm and hyperparameter search
(CASH) chooses an estimator and hyperparameters

▶ neural architecture search (NAS) chooses a deep
learning architecture
e.g., number of layers, type of layer, width, learning rate

▶ metalearning, or learning to learn, uses information
gleaned from a corpus of datasets to choose a better model
on a new dataset

kinds of datasets: tabular, timeseries, image, text, video,
genomics, . . .

10 / 38

Definitions

automated machine learning (AutoML) chooses a ML model
+ hyperparameters so you don’t have to.

types of AutoML:

▶ hyperparameter tuning chooses the best hyperparameters
for the model

▶ combined algorithm and hyperparameter search
(CASH) chooses an estimator and hyperparameters

▶ neural architecture search (NAS) chooses a deep
learning architecture
e.g., number of layers, type of layer, width, learning rate

▶ metalearning, or learning to learn, uses information
gleaned from a corpus of datasets to choose a better model
on a new dataset

kinds of datasets: tabular, timeseries, image, text, video,
genomics, . . .

10 / 38

Definitions

automated machine learning (AutoML) chooses a ML model
+ hyperparameters so you don’t have to.

types of AutoML:

▶ hyperparameter tuning chooses the best hyperparameters
for the model

▶ combined algorithm and hyperparameter search
(CASH) chooses an estimator and hyperparameters

▶ neural architecture search (NAS) chooses a deep
learning architecture
e.g., number of layers, type of layer, width, learning rate

▶ metalearning, or learning to learn, uses information
gleaned from a corpus of datasets to choose a better model
on a new dataset

kinds of datasets: tabular, timeseries, image, text, video,
genomics, . . .

10 / 38

Definitions

automated machine learning (AutoML) chooses a ML model
+ hyperparameters so you don’t have to.

types of AutoML:

▶ hyperparameter tuning chooses the best hyperparameters
for the model

▶ combined algorithm and hyperparameter search
(CASH) chooses an estimator and hyperparameters

▶ neural architecture search (NAS) chooses a deep
learning architecture
e.g., number of layers, type of layer, width, learning rate

▶ metalearning, or learning to learn, uses information
gleaned from a corpus of datasets to choose a better model
on a new dataset

kinds of datasets: tabular, timeseries, image, text, video,
genomics, . . .

10 / 38

Outline

Why AutoML?

Techniques

Hyperparameter tuning

Pipeline selection

Ensembles and stacking

Metalearning

Systems

Challenges and conclusion

11 / 38

Grid search vs random search

source: Bergstra & Bengio 2012 [Bergstra and Bengio, 2012].

▶ grid search is more well-known

▶ random search samples more distinct values of each hyperparameter

▶ random search is more efficient when only some hyperparameters are
important

12 / 38

Bayesian optimization (BO)

acquisition max

acquisition function (u(·))

observation (x)
objective fn (f(·))

t = 2

new observation (xt)

t = 3

posterior mean (µ(·))

posterior uncertainty
(µ(·)±σ(·))

t = 4

source: Brochu et al, 2010 [Brochu et al., 2010]
13 / 38

Multi-armed bandit

How long to spend evaluating each pipeline?

▶ Budget: training examples or training time

▶ Estimate performance of each pipeline with small budget

▶ Allocate budget to promising pipelines

14 / 38

Genetic programming

source: dotnetlovers.com

“Survival of the fittest”:
Automatically explore numerous
possible pipelines to find the best
for the given dataset

15 / 38

Ensemble

source: Sirakorn - CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=85888768

16 / 38

Stacking

source: AutoGluon Tabular [Erickson et al., 2020]
17 / 38

meta-learning

Training

Validation

Test

Learning

Learning

Training

Validation

Test

Learning

Training

Meta­learning

Validation

Test

Training

Validation

Test

Meta­training

Meta­
validation

Meta­
test

meta-learning

source: OBOE [Yang et al., 2019]

can use meta-learning to

▶ generalize across datasets

▶ generalize across models

▶ pick a model on a new dataset without any expensive function
evaluations

but how can we featurize a dataset, or featurize a model?

18 / 38

meta-learning

Training

Validation

Test

Learning

Learning

Training

Validation

Test

Learning

Training

Meta­learning

Validation

Test

Training

Validation

Test

Meta­training

Meta­
validation

Meta­
test

meta-learning

source: OBOE [Yang et al., 2019]

can use meta-learning to

▶ generalize across datasets

▶ generalize across models

▶ pick a model on a new dataset without any expensive function
evaluations

but how can we featurize a dataset, or featurize a model?
18 / 38

Dataset meta-features
Meta-feature name Explanation

number of instances number of data points in the dataset
log number of instances the (natural) logarithm of number of instances
number of classes
number of features
log number of features the (natural) logarithm of number of features
number of instances with missing values
percentage of instances with missing values
number of features with missing values
percentage of features with missing values
number of missing values
percentage of missing values
number of numeric features
number of categorical features
ratio numerical to nominal the ratio of number of numerical features to the number of categorical features
ratio numerical to nominal
dataset ratio the ratio of number of features to the number of data points
log dataset ratio the natural logarithm of dataset ratio
inverse dataset ratio
log inverse dataset ratio
class probability (min, max, mean, std) the (min, max, mean, std) of ratios of data points in each class
symbols (min, max, mean, std, sum) the (min, max, mean, std, sum) of the numbers of symbols in all categorical features
kurtosis (min, max, mean, std)
skewness (min, max, mean, std)
class entropy the entropy of the distribution of class labels (logarithm base 2)

landmarking meta-features [Pfahringer et al., 2000]
LDA
decision tree decision tree classifier with 10-fold cross validation
decision node learner 10-fold cross-validated decision tree classifier with criterion="entropy",

max depth=1, min samples split=2, min samples leaf=1,

max features=None

random node learner 10-fold cross-validated decision tree classifier with max features=1 and the
same above for the rest

1-NN
PCA fraction of components for 95% variance the fraction of components that account for 95% of variance
PCA kurtosis first PC kurtosis of the dimensionality-reduced data matrix along the first principal component
PCA skewness first PC skewness of the dimensionality-reduced data matrix along the first principal component

source: Auto-sklearn [Feurer et al., 2015]
19 / 38

A simple meta-learning system: Auto-sklearn

offline, for all training datasets:

▶ compute dataset meta-features

▶ use Bayesian optimization to find the best model +
hyperparameters

online, for test dataset:

▶ compute dataset meta-features

▶ consider the best model + hyperparameters for k most
similar datasets

▶ (optionally) tune hyperparameters further with Bayesian
optimization

▶ fit models; form ensemble

source: Simplified from Auto-sklearn [Feurer et al., 2015]

20 / 38

A simple meta-learning system: Auto-sklearn

Meta-learning with precomputed meta-features

trainingdataset

test dataset

error

y X
NNZ

UNI AT d

t.IEILeqII is a

teen
y X

err

Fi

69 HE 13

source: Simplified from Auto-sklearn [Feurer et al., 2015]

21 / 38

A simple meta-learning system: Auto-sklearn

Meta-learning with precomputed meta-features

trainingdataset

test dataset

error

y X
NNZ

UNI AT d

t.IEILeqII is a

teen
y X

err

Fi

69 HE 13

source: Simplified from Auto-sklearn [Feurer et al., 2015]

22 / 38

Low-rank metalearning

our thesis: you can and should metalearn from the task itself

▶ run experiments on other datasets and fast-to-train models

▶ use low rank structure to metalearn

a similar approach to low-rank metalearning using Bayesian
optimization: [Fusi et al., 2018]

23 / 38

OBOE: low rank autoML

given: n datasets, d machine learning models

measure: error of each model on each dataset
form: n × d data table Y

Y = datasets



models︷ ︸︸ ︷× × × × ×
× × × × ×
× × × × ×



source: OBOE [Yang et al., 2019]

24 / 38

OBOE: low rank autoML

given: n datasets, d machine learning models
measure: error of each model on each dataset

form: n × d data table Y

Y = datasets



models︷ ︸︸ ︷× × × × ×
× × × × ×
× × × × ×



source: OBOE [Yang et al., 2019]

24 / 38

OBOE: low rank autoML

given: n datasets, d machine learning models
measure: error of each model on each dataset
form: n × d data table Y

Y = datasets



models︷ ︸︸ ︷× × × × ×
× × × × ×
× × × × ×



source: OBOE [Yang et al., 2019]

24 / 38

OBOE: low rank autoML

given: n datasets, d machine learning models
measure: error of each model on each dataset
form: n × d data table Y
find: X ∈ Rn×k , W ∈ Rk×d for which

Y ≈ XW

datasets



models︷ ︸︸ ︷× × × × ×
× × × × ×
× × × × ×

 ≈

−xT1 −
...

−xTn −


 | |
w1 . . . wd

| |



source: OBOE [Yang et al., 2019]

24 / 38

OBOE: low rank autoML

given: n datasets, d machine learning models
measure: error of each model on each dataset
form: n × d data table Y
find: X ∈ Rn×k , W ∈ Rk×d for which

Y ≈ XW

datasets



models︷ ︸︸ ︷
× × × × ×
× × × × ×
× × × × ×
? ? ? ? ?

 ≈


−xT1 −

...
−xTn −
? ?


 | |
w1 . . . wd

| |



source: OBOE [Yang et al., 2019]

24 / 38

OBOE: low rank autoML

given: n datasets, d machine learning models
measure: error of each model on each dataset
form: n × d data table Y
find: X ∈ Rn×k , W ∈ Rk×d for which

Y ≈ XW

datasets



models︷ ︸︸ ︷
× × × × ×
× × × × ×
× × × × ×
? × × ? ×

 ≈


−xT1 −

...
−xTn −
? ?


 | |
w1 . . . wd

| |



source: OBOE [Yang et al., 2019]

24 / 38

OBOE: low rank autoML

given: n datasets, d machine learning models
measure: error of each model on each dataset
form: n × d data table Y
find: X ∈ Rn×k , W ∈ Rk×d for which

Y ≈ XW

datasets



models︷ ︸︸ ︷
× × × × ×
× × × × ×
× × × × ×
? × × ? ×

 ≈


−xT1 −

...
−xTn −
−xTn+1−


 | |
w1 . . . wd

| |



source: OBOE [Yang et al., 2019]

24 / 38

OBOE: low rank autoML

given: n datasets, d machine learning models
measure: error of each model on each dataset
form: n × d data table Y
find: X ∈ Rn×k , W ∈ Rk×d for which

Y ≈ XW

datasets



models︷ ︸︸ ︷
× × × × ×
× × × × ×
× × × × ×
· × × · ×

 ≈


−xT1 −

...
−xTn −
−xTn+1−


 | |
w1 . . . wd

| |



▶ rows xi ∈ Rk of X are dataset metafeatures
▶ columns wj ∈ Rk of W are model metafeatures
▶ xTi wj ≈ Yij are predicted model performance

source: OBOE [Yang et al., 2019]

24 / 38

OBOE: low rank autoML

given: n datasets, d machine learning models
measure: error of each model on each dataset
form: n × d data table Y
find: X ∈ Rn×k , W ∈ Rk×d for which

Y ≈ XW

datasets



models︷ ︸︸ ︷
× × × × ×
× × × × ×
× × × × ×
· × × · ×

 ≈


−xT1 −

...
−xTn −
−xTn+1−


 | |
w1 . . . wd

| |



▶ rows xi ∈ Rk of X are dataset metafeatures
▶ columns wj ∈ Rk of W are model metafeatures
▶ xTi wj ≈ Yij are predicted model performance

source: OBOE [Yang et al., 2019]
24 / 38

Is AutoML really low rank?

0 10 20 30 40 50
index i

100

101

102

103

104

105

σ
i

tradeoff:

▶ model improves with higher rank

▶ required experiments increase with higher rank

our approach: increase rank until you run out of time

(most square-ish data matrices are approximately low rank
[Udell and Townsend, 2018])

25 / 38

Is AutoML really low rank?

0 10 20 30 40 50
index i

100

101

102

103

104

105

σ
i

tradeoff:

▶ model improves with higher rank

▶ required experiments increase with higher rank

our approach: increase rank until you run out of time

(most square-ish data matrices are approximately low rank
[Udell and Townsend, 2018])

25 / 38

Is AutoML really low rank?

0 10 20 30 40 50
index i

100

101

102

103

104

105

σ
i

tradeoff:

▶ model improves with higher rank

▶ required experiments increase with higher rank

our approach: increase rank until you run out of time

(most square-ish data matrices are approximately low rank
[Udell and Townsend, 2018])

25 / 38

Value of information

▶ want to find unknown vector x ∈ Rk

▶ pick set of measurements yj ∈ Rk , j ∈ S ⊆ [1, . . . , n]

▶ measure aj = xT yj + ϵj where ϵj ∼ N (0, 1) iid

▶ estimate x via least squares:

x̂ = (YY T)−1Ya = (YY T)−1Y (Y T x + ϵ)

where Y = [yj]j∈S
▶ hence

E(x̂) = x

var(x̂) = (YY T)−1 =

∑
j∈S

yjy
T
j

−1

26 / 38

Value of information

▶ want to find unknown vector x ∈ Rk

▶ pick set of measurements yj ∈ Rk , j ∈ S ⊆ [1, . . . , n]

▶ measure aj = xT yj + ϵj where ϵj ∼ N (0, 1) iid

▶ estimate x via least squares:

x̂ = (YY T)−1Ya = (YY T)−1Y (Y T x + ϵ)

where Y = [yj]j∈S
▶ hence

E(x̂) = x

var(x̂) = (YY T)−1 =

∑
j∈S

yjy
T
j

−1

26 / 38

Value of information

▶ want to find unknown vector x ∈ Rk

▶ pick set of measurements yj ∈ Rk , j ∈ S ⊆ [1, . . . , n]

▶ measure aj = xT yj + ϵj where ϵj ∼ N (0, 1) iid

▶ estimate x via least squares:

x̂ = (YY T)−1Ya = (YY T)−1Y (Y T x + ϵ)

where Y = [yj]j∈S
▶ hence

E(x̂) = x

var(x̂) = (YY T)−1 =

∑
j∈S

yjy
T
j

−1

26 / 38

Value of information

▶ want to find unknown vector x ∈ Rk

▶ pick set of measurements yj ∈ Rk , j ∈ S ⊆ [1, . . . , n]

▶ measure aj = xT yj + ϵj where ϵj ∼ N (0, 1) iid

▶ estimate x via least squares:

x̂ = (YY T)−1Ya = (YY T)−1Y (Y T x + ϵ)

where Y = [yj]j∈S

▶ hence

E(x̂) = x

var(x̂) = (YY T)−1 =

∑
j∈S

yjy
T
j

−1

26 / 38

Value of information

▶ want to find unknown vector x ∈ Rk

▶ pick set of measurements yj ∈ Rk , j ∈ S ⊆ [1, . . . , n]

▶ measure aj = xT yj + ϵj where ϵj ∼ N (0, 1) iid

▶ estimate x via least squares:

x̂ = (YY T)−1Ya = (YY T)−1Y (Y T x + ϵ)

where Y = [yj]j∈S
▶ hence

E(x̂) = x

var(x̂) = (YY T)−1 =

∑
j∈S

yjy
T
j

−1

26 / 38

Experiment design for timely model selection

Which algorithms to use to predict performance?

minimize
vj

− log det
(n∑

j=1

vjyjy
T
j

)
subject to

n∑
j=1

vj t̂j ≤ τ

vj ∈ {0, 1} ∀j ∈ [n].

▶ t̂j : estimated runtime of each machine learning model
▶ τ : runtime budget

to solve:

▶ relax to semidefinite program [Yang et al., 2019]
▶ use greedy algorithm; submodularity guarantees good

performance [Yang et al., 2020]

27 / 38

Experiment design for timely model selection

Which algorithms to use to predict performance?

minimize
vj

− log det
(n∑

j=1

vjyjy
T
j

)
subject to

n∑
j=1

vj t̂j ≤ τ

vj ∈ {0, 1} ∀j ∈ [n].

▶ t̂j : estimated runtime of each machine learning model
▶ τ : runtime budget

to solve:

▶ relax to semidefinite program [Yang et al., 2019]
▶ use greedy algorithm; submodularity guarantees good

performance [Yang et al., 2020]
27 / 38

Estimated runtime

estimate runtime using polynomial regression on
(# datapoints, # features)

2−10 2−5 20 25 210 215

actual runtime (s)

2−10

2−5

20

25

210

215

p
re

d
ic

te
d

ru
nt

im
e

(s
)

Adaboost

Decision Tree

Extra Trees

Gradient Boosting

Gaussian Naive Bayes

kNN

Logistic Regression

Multilayer Perceptron

Perceptron

Random Forest

Kernel SVM

Linear SVM

y=x±1

28 / 38

Oboe: Does it work?

1.0 2.0 4.0 8.0 16.0 32.0 64.0
runtime budget (s)

0.1

0.2

0.3

0.4

0.5
b

al
an

ce
d

er
ro

r
ra

te

OpenML

1.0 2.0 4.0 8.0 16.0 32.0 64.0
runtime budget (s)

0.0

0.1

0.2

0.3

0.4

0.5

b
al

an
ce

d
er

ro
r

ra
te

UCI

2.0 4.0 8.0 16.0 32.0 64.0
runtime budget (s)

1.6

1.8

2.0

2.2

2.4

av
er

ag
e

ra
n

k

Oboe

auto-sklearn

random

1.0 2.0 4.0 8.0 16.0 32.0 64.0
runtime budget (s)

1.6

1.8

2.0

2.2

2.4

av
er

ag
e

ra
n

k

OpenML

1.0 2.0 4.0 8.0 16.0 32.0 64.0
runtime budget (s)

1.6

1.8

2.0

2.2

2.4

av
er

ag
e

ra
n

k

UCI

Figure: In 3a and 3b, shaded area = 75th–25th percentile.
In 3c and 3d, rank 1 is best and 3 is worst.

29 / 38

Metalearning with NLP and GNNs

source: Real-time AutoML [Drori et al., 2020]

30 / 38

Outline

Why AutoML?

Techniques

Hyperparameter tuning

Pipeline selection

Ensembles and stacking

Metalearning

Systems

Challenges and conclusion

31 / 38

AutoML systems

Optimizing over scikit-learn style models:

▶ Auto-WEKA [Thornton et al., 2013]: BO on conditional
search space

▶ auto-sklearn [Feurer et al., 2015]: meta-learning + BO
▶ TPOT [Olson et al., 2016]: genetic programming
▶ Hyperband [Li et al., 2018]: multi-armed bandit
▶ PMF [Fusi et al., 2018]: matrix factorization + BO
▶ Oboe [Yang et al., 2019]: matrix factorization +

experiment design
▶ AutoGluon [Erickson et al., 2020]: ensembling, stacking
▶ FLAML [Wang et al., 2020]: multi-armed bandit
▶ . . .

commercial tools:

▶ Google AutoML Tabular
▶ Microsoft Azure AutoML
▶ Amazon AutoGluon on SageMaker
▶ H2O AutoML
▶ . . .

32 / 38

Neural architecture search (NAS)

▶ Google NAS [Zoph and Le, 2016]: reinforcement learning

▶ NASBOT [Kandasamy et al., 2018]: BO + optimal
transport

▶ Auto-Keras [Jin et al., 2019]: BO + network morphism

▶ AutoML-Zero [Real et al., 2020]: genetic programming

▶ . . .

33 / 38

Lots of good options!

source: AutoGluon Tabular [Erickson et al., 2020]

34 / 38

Fast and slow options

blood-taustral
credit-

phoneme

kc1

sylvine

kr-vs-k

amazon_

jasmine

adult
bank_manumeraihiggs

airline

nomao

miniboo

christi

kddcup0

apsfail

albert

guiller
riccard

0

1

60s

Auto-sklearn Cloud-automl HpBandSter H2OAutoML TPOT FLAML

blood-taustral
credit-

phoneme

kc1

sylvine

kr-vs-k

amazon_

jasmine

adult
bank_manumeraihiggs

airline

nomao

miniboo

christi

kddcup0

apsfail

albert

guiller
riccard

0

1

600s
blood-taustral

credit-

phoneme

kc1

sylvine

kr-vs-k

amazon_

jasmine

adult
bank_manumeraihiggs

airline

nomao

miniboo

christi

kddcup0

apsfail

albert

guiller
riccard

0

1

3600s

Binary classification datasets ordered by size counter clockwise,
from smallest (blood-transfusion) to largest (riccardo). Metric:
AUC.

source: FLAML [Wang et al., 2020]

35 / 38

Outline

Why AutoML?

Techniques

Hyperparameter tuning

Pipeline selection

Ensembles and stacking

Metalearning

Systems

Challenges and conclusion

36 / 38

Challenges

▶ interpretability: can we find good, interpretable models?
when is interpretability necessary?

▶ feature engineering

▶ overfitting

▶ cost:
e.g., Google RL-based NAS [Zoph and Le, 2016]: 1k GPU
days
(> $70k on AWS)

37 / 38

Challenges

▶ interpretability: can we find good, interpretable models?
when is interpretability necessary?

▶ feature engineering

▶ overfitting

▶ cost:
e.g., Google RL-based NAS [Zoph and Le, 2016]: 1k GPU
days
(> $70k on AWS)

37 / 38

Challenges

▶ interpretability: can we find good, interpretable models?
when is interpretability necessary?

▶ feature engineering

▶ overfitting

▶ cost:
e.g., Google RL-based NAS [Zoph and Le, 2016]: 1k GPU
days
(> $70k on AWS)

37 / 38

Challenges

▶ interpretability: can we find good, interpretable models?
when is interpretability necessary?

▶ feature engineering

▶ overfitting

▶ cost:
e.g., Google RL-based NAS [Zoph and Le, 2016]: 1k GPU
days
(> $70k on AWS)

37 / 38

Challenges

▶ interpretability: can we find good, interpretable models?
when is interpretability necessary?

▶ feature engineering

▶ overfitting

▶ cost:
e.g., Google RL-based NAS [Zoph and Le, 2016]: 1k GPU
days
(> $70k on AWS)

37 / 38

Summary

▶ AutoML automatically picks a good ML pipeline for your
problem

▶ lots of easy-to-use packages

▶ lots of interesting ideas

38 / 38

References I

Bergstra, J. and Bengio, Y. (2012).

Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(Feb):281–305.

Brochu, E., Cora, V. M., and De Freitas, N. (2010).

A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning.
arXiv preprint arXiv:1012.2599.

Drori, I., Liu, L., Ma, Q., Deykin, J., Kates, B., and Udell, M. (2020).

Real-time AutoML.
Submitted.

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., and Smola, A. (2020).

Autogluon-tabular: Robust and accurate automl for structured data.
arXiv preprint arXiv:2003.06505.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., and Hutter, F. (2015).

Efficient and robust automated machine learning.
In Advances in Neural Information Processing Systems, pages 2962–2970.

Fusi, N., Sheth, R., and Elibol, M. (2018).

Probabilistic matrix factorization for automated machine learning.
In Advances in Neural Information Processing Systems, pages 3352–3361.

Jin, H., Song, Q., and Hu, X. (2019).

Auto-keras: An efficient neural architecture search system.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’19, pages 1946–1956, New York, NY, USA. ACM.

References II

Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., and Xing, E. (2018).

Neural Architecture Search with Bayesian Optimisation and Optimal Transport.
arXiv preprint arXiv:1802.07191.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2018).

Hyperband: A novel bandit-based approach to hyperparameter optimization.
Journal of Machine Learning Research, 18(185):1–52.

Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender, N. A., Kidd, L. C., and Moore, J. H. (2016).

Applications of Evolutionary Computation: 19th European Conference, EvoApplications 2016, Porto,
Portugal, March 30 – April 1, 2016, Proceedings, Part I, chapter Automating Biomedical Data Science
Through Tree-Based Pipeline Optimization, pages 123–137.
Springer International Publishing.

Pfahringer, B., Bensusan, H., and Giraud-Carrier, C. G. (2000).

Meta-Learning by Landmarking Various Learning Algorithms.
In ICML, pages 743–750.

Real, E., Liang, C., So, D. R., and Le, Q. V. (2020).

Automl-zero: Evolving machine learning algorithms from scratch.
arXiv preprint arXiv:2003.03384.

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013).

Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms.
In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 847–855. ACM.

References III

Udell, M. and Townsend, A. (2018).

Why are big data matrices approximately low rank?
SIAM Mathematics of Data Science (SIMODS), to appear.

Wang, C., Wu, Q., Weimer, M., and Zhu, E. (2020).

FLAML: A fast and lightweight AutoML library.

Wolpert, D. H. (1996).

The lack of a priori distinctions between learning algorithms.
Neural Computation, 8(7):1341–1390.

Yang, C., Akimoto, Y., Kim, D. W., and Udell, M. (2019).

Oboe: Collaborative filtering for automl model selection.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 1173–1183. ACM.

Yang, C., Fan, J., Wu, Z., and Udell, M. (2020).

AutoML pipeline selection: Efficiently navigating the combinatorial space.
In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD).

Zoph, B. and Le, Q. V. (2016).

Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578.

	Why AutoML?
	Techniques
	Systems
	Challenges and conclusion

