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So many machine learning problems. . .

object detection drug discovery

speech recognition social science
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. . . so little time

source: https://scikit-learn.org
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Different models perform differently

source: https://scikit-learn.org
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Decisions, decisions. . .

a pipeline: a directed graph of learning components

impute missing entries
by mean one-hot-encoderraw dataset

imputer encoder
0 mean and unit

variance for
each feature

PCA
 25% components

kNN 
k=5

standardizer dimensionality
reducer estimator

Predictions

Pipeline

so many choices to make:

▶ data imputer: fill in missing values by median? . . .

▶ encoder: one-hot encode? . . .

▶ standardizer: rescale each feature? . . .

▶ dimensionality reducer: PCA, or select by variance? . . .

▶ estimator: use decision tree or logistic regression? . . .

▶ hyperparameters: depth of decision tree?
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Poll

Which of these estimators do you think performs best most
often for classification?

▶ logistic regression

▶ decision tree

▶ gradient boosting

▶ multilayer perceptron

▶ SVM
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No Free Lunch

On 215 midsize OpenML classification datasets:

▶ The best-on-average pipeline (highest average ranking):

impute missing entries
by mode

encode
categorical as

integer
raw dataset

imputer encoder
0 mean and unit

variance for
each feature

remove features
with 0 variance

gradient boosting w/
learning rate 0.25 and

maximum depth 3

standardizer dimensionality
reducer estimator

Predictions

The baseline pipeline

▶ The best estimator for each dataset:

gradient boosting - 38.60%

multilayer perceptron - 20.93%

kNN - 10.23%

adaboost - 8.84%

extra trees - 5.58%

logistic regression - 5.58%

decision tree - 3.72%

random forest - 3.26%

linear SVM - 1.86%

Gaussian naive Bayes - 1.40%

source: [Yang et al., 2020]

Theorem (No free lunch [Wolpert, 1996])
There is no one model that works best for every problem.
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Problem solved!
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Definitions

automated machine learning (AutoML) chooses a ML model
+ hyperparameters so you don’t have to.

types of AutoML:

▶ hyperparameter tuning chooses the best hyperparameters
for the model

▶ combined algorithm and hyperparameter search
(CASH) chooses an estimator and hyperparameters

▶ neural architecture search (NAS) chooses a deep
learning architecture
e.g., number of layers, type of layer, width, learning rate

▶ metalearning, or learning to learn, uses information
gleaned from a corpus of datasets to choose a better model
on a new dataset

kinds of datasets: tabular, timeseries, image, text, video,
genomics, . . .
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Grid search vs random search

source: Bergstra & Bengio 2012 [Bergstra and Bengio, 2012].

▶ grid search is more well-known

▶ random search samples more distinct values of each hyperparameter

▶ random search is more efficient when only some hyperparameters are
important
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Bayesian optimization (BO)

acquisition max

acquisition function (u( ·))

observation (x)
objective fn (f( ·))

t = 2

new observation (xt)

t = 3

posterior mean (µ( ·))

posterior uncertainty
(µ( ·)±σ( ·))

t = 4

source: Brochu et al, 2010 [Brochu et al., 2010]
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Multi-armed bandit

How long to spend evaluating each pipeline?

▶ Budget: training examples or training time

▶ Estimate performance of each pipeline with small budget

▶ Allocate budget to promising pipelines
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Genetic programming

source: dotnetlovers.com

“Survival of the fittest”:
Automatically explore numerous
possible pipelines to find the best
for the given dataset
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Ensemble

source: Sirakorn - CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=85888768
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Stacking

source: AutoGluon Tabular [Erickson et al., 2020]
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meta-learning

Training

Validation 

Test 

Learning

Learning

Training

Validation 

Test 

Learning

Training

Meta­learning

Validation 

Test 

Training

Validation

Test 

Meta­training

 
 
 
 
 
 
 

Meta­
validation

Meta­
test 

meta-learning

source: OBOE [Yang et al., 2019]

can use meta-learning to

▶ generalize across datasets

▶ generalize across models

▶ pick a model on a new dataset without any expensive function
evaluations

but how can we featurize a dataset, or featurize a model?
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Dataset meta-features
Meta-feature name Explanation

number of instances number of data points in the dataset
log number of instances the (natural) logarithm of number of instances
number of classes
number of features
log number of features the (natural) logarithm of number of features
number of instances with missing values
percentage of instances with missing values
number of features with missing values
percentage of features with missing values
number of missing values
percentage of missing values
number of numeric features
number of categorical features
ratio numerical to nominal the ratio of number of numerical features to the number of categorical features
ratio numerical to nominal
dataset ratio the ratio of number of features to the number of data points
log dataset ratio the natural logarithm of dataset ratio
inverse dataset ratio
log inverse dataset ratio
class probability (min, max, mean, std) the (min, max, mean, std) of ratios of data points in each class
symbols (min, max, mean, std, sum) the (min, max, mean, std, sum) of the numbers of symbols in all categorical features
kurtosis (min, max, mean, std)
skewness (min, max, mean, std)
class entropy the entropy of the distribution of class labels (logarithm base 2)

landmarking meta-features [Pfahringer et al., 2000]
LDA
decision tree decision tree classifier with 10-fold cross validation
decision node learner 10-fold cross-validated decision tree classifier with criterion="entropy",

max depth=1, min samples split=2, min samples leaf=1,

max features=None

random node learner 10-fold cross-validated decision tree classifier with max features=1 and the
same above for the rest

1-NN
PCA fraction of components for 95% variance the fraction of components that account for 95% of variance
PCA kurtosis first PC kurtosis of the dimensionality-reduced data matrix along the first principal component
PCA skewness first PC skewness of the dimensionality-reduced data matrix along the first principal component

source: Auto-sklearn [Feurer et al., 2015]
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A simple meta-learning system: Auto-sklearn

offline, for all training datasets:

▶ compute dataset meta-features

▶ use Bayesian optimization to find the best model +
hyperparameters

online, for test dataset:

▶ compute dataset meta-features

▶ consider the best model + hyperparameters for k most
similar datasets

▶ (optionally) tune hyperparameters further with Bayesian
optimization

▶ fit models; form ensemble

source: Simplified from Auto-sklearn [Feurer et al., 2015]
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A simple meta-learning system: Auto-sklearn
 
Meta-learning with precomputed meta-features 
 
 
 
 
 
 
 
 
 
 
 
 

trainingdataset

test dataset

error

y X
NNZ

UNI AT d

t.IEILeqII is a

teen
y X

err

Fi

69 HE 13

source: Simplified from Auto-sklearn [Feurer et al., 2015]
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Low-rank metalearning

our thesis: you can and should metalearn from the task itself

▶ run experiments on other datasets and fast-to-train models

▶ use low rank structure to metalearn

a similar approach to low-rank metalearning using Bayesian
optimization: [Fusi et al., 2018]
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OBOE: low rank autoML

given: n datasets, d machine learning models

measure: error of each model on each dataset
form: n × d data table Y

Y = datasets



models︷ ︸︸ ︷× × × × ×
× × × × ×
× × × × ×



source: OBOE [Yang et al., 2019]
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| |
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Is AutoML really low rank?

0 10 20 30 40 50
index i

100

101

102

103

104

105

σ
i

tradeoff:

▶ model improves with higher rank

▶ required experiments increase with higher rank

our approach: increase rank until you run out of time

(most square-ish data matrices are approximately low rank
[Udell and Townsend, 2018])
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Value of information

▶ want to find unknown vector x ∈ Rk

▶ pick set of measurements yj ∈ Rk , j ∈ S ⊆ [1, . . . , n]

▶ measure aj = xT yj + ϵj where ϵj ∼ N (0, 1) iid

▶ estimate x via least squares:

x̂ = (YY T )−1Ya = (YY T )−1Y (Y T x + ϵ)

where Y = [yj ]j∈S
▶ hence

E(x̂) = x

var(x̂) = (YY T )−1 =

∑
j∈S

yjy
T
j

−1
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Experiment design for timely model selection

Which algorithms to use to predict performance?

minimize
vj

− log det
( n∑

j=1

vjyjy
T
j

)
subject to

n∑
j=1

vj t̂j ≤ τ

vj ∈ {0, 1} ∀j ∈ [n].

▶ t̂j : estimated runtime of each machine learning model
▶ τ : runtime budget

to solve:

▶ relax to semidefinite program [Yang et al., 2019]
▶ use greedy algorithm; submodularity guarantees good

performance [Yang et al., 2020]
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Estimated runtime

estimate runtime using polynomial regression on
(# datapoints, # features)
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y=x±1
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Oboe: Does it work?
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Figure: In 3a and 3b, shaded area = 75th–25th percentile.
In 3c and 3d, rank 1 is best and 3 is worst.
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Metalearning with NLP and GNNs

source: Real-time AutoML [Drori et al., 2020]
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AutoML systems

Optimizing over scikit-learn style models:

▶ Auto-WEKA [Thornton et al., 2013]: BO on conditional
search space

▶ auto-sklearn [Feurer et al., 2015]: meta-learning + BO
▶ TPOT [Olson et al., 2016]: genetic programming
▶ Hyperband [Li et al., 2018]: multi-armed bandit
▶ PMF [Fusi et al., 2018]: matrix factorization + BO
▶ Oboe [Yang et al., 2019]: matrix factorization +

experiment design
▶ AutoGluon [Erickson et al., 2020]: ensembling, stacking
▶ FLAML [Wang et al., 2020]: multi-armed bandit
▶ . . .

commercial tools:

▶ Google AutoML Tabular
▶ Microsoft Azure AutoML
▶ Amazon AutoGluon on SageMaker
▶ H2O AutoML
▶ . . .
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Neural architecture search (NAS)

▶ Google NAS [Zoph and Le, 2016]: reinforcement learning

▶ NASBOT [Kandasamy et al., 2018]: BO + optimal
transport

▶ Auto-Keras [Jin et al., 2019]: BO + network morphism

▶ AutoML-Zero [Real et al., 2020]: genetic programming

▶ . . .
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Lots of good options!

source: AutoGluon Tabular [Erickson et al., 2020]
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Fast and slow options
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Binary classification datasets ordered by size counter clockwise,
from smallest (blood-transfusion) to largest (riccardo). Metric:
AUC.

source: FLAML [Wang et al., 2020]
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Challenges

▶ interpretability: can we find good, interpretable models?
when is interpretability necessary?

▶ feature engineering

▶ overfitting

▶ cost:
e.g., Google RL-based NAS [Zoph and Le, 2016]: 1k GPU
days
(> $70k on AWS)
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Summary

▶ AutoML automatically picks a good ML pipeline for your
problem

▶ lots of easy-to-use packages

▶ lots of interesting ideas
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